-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdjustSchematic.thy
113 lines (89 loc) · 3.57 KB
/
AdjustSchematic.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
(*
* Copyright 2014, NICTA
*
* This software may be distributed and modified according to the terms of
* the BSD 2-Clause license. Note that NO WARRANTY is provided.
* See "LICENSE_BSD2.txt" for details.
*
* @TAG(NICTA_BSD)
*)
theory AdjustSchematic (* FIXME: bitrotted *)
imports "~~/src/HOL/Main"
begin
lemma meta_arg_cong:
"f == g \<Longrightarrow> f x == g x"
by simp
text {*
The tactic defined below will adjust schematic applications of the form
"?P (a, (b, c)) d True e f" in the current goal into the form
"?P' a b c d e f" (by substituting P' for P in a somewhat complex way).
The aim of the game is to get more straightforward unification in the current
goal.
*}
ML {*
structure AdjustSchematics = struct
fun mk_inst (nm, t) = let
val (v, xs) = strip_comb t
val (Ts, T) = strip_type (fastype_of v)
val xTs = xs ~~ take (length xs) Ts
val ranT = drop (length xs) Ts ---> T
val bs = map Bound (rev (0 upto (length xs - 1)))
fun mk_var s T (Bound n) = Var ((s, n), T)
| mk_var _ _ t = raise TERM ("mk_inst: mk_var:", [t])
fun varify_tup s (((pr as Const (@{const_name Pair}, T)) $ x $ y), _, b)
= (pr $ varify_tup (s ^ "fst") (x, domain_type T, b)
$ varify_tup (s ^ "snd") (y, domain_type (range_type T), b))
| varify_tup s (_, T, b) = mk_var s T b
fun double_app f (t1, t2) = let val app = f t1
in (app, head_of app $ t2) end
fun delve_pair (tup as (Const (@{const_name Pair}, _) $ x $ y), ts)
= delve_pair (x, double_app HOLogic.mk_fst ts)
@ delve_pair (y, double_app HOLogic.mk_snd ts)
| delve_pair (_, (t1, t2)) = [(t1, t2, fastype_of t1)]
val yTs = maps (fn ((Const _, _), _) => []
| (((t as Const (@{const_name Pair}, _) $ _ $ _), T), b)
=> delve_pair (t, (varify_tup "x" (t, T, b), b))
| ((_, T), b) => [(mk_var "x" T b, b, T)]) (xTs ~~ bs)
val f = Free (nm, map #3 yTs ---> ranT)
val f_app = list_comb (f, map #2 yTs)
val rhs = fold (fn T => fn t => Abs ("x", T, t)) (rev (map snd xTs)) f_app
val pat = list_comb (f, map #1 yTs)
in ((v, rhs), pat) end
fun get_schem_apps (f $ x) = if is_Var (head_of f)
then [f $ x] else get_schem_apps f @ get_schem_apps x
| get_schem_apps (Abs (_, _, t)) = get_schem_apps t
| get_schem_apps _ = []
fun convertible_schem_app t = exists
(fn (Const _) => true
| (Const (@{const_name Pair}, _) $ _ $ _) => true
| _ => false)
(snd (strip_comb t))
fun rewr_fst_snd ctxt = Simplifier.rewrite
(put_simpset HOL_basic_ss ctxt addsimps @{thms fst_conv snd_conv})
fun apply_insts insts ctxt t = let
val inst_pairs = map (apply2 (Thm.cterm_of ctxt) o fst) insts
val rewrs = map (rewr_fst_snd ctxt o Thm.cterm_of ctxt o snd) insts
val frees = map (snd #> head_of #> dest_Free #> fst) insts
in cterm_instantiate inst_pairs t
|> (ALLGOALS (CONVERSION (Thm.beta_conversion true))
THEN Raw_Simplifier.rewrite_goals_tac ctxt rewrs)
|> Seq.hd |> Drule.generalize ([], frees)
|> Seq.single
end
fun schem_app_name t = (head_of t |> dest_Var |> fst |> fst, t)
fun tac ctxt = CSUBGOAL (fn (csg, i) => let
val convertibles = get_schem_apps (Envir.beta_eta_contract (Thm.term_of csg))
|> filter convertible_schem_app
|> map schem_app_name
in if null convertibles then no_tac
else (fn t => apply_insts (convertibles
|> Term.variant_frees (Thm.prop_of t)
|> map mk_inst) ctxt t)
end)
end
*}
schematic_goal
"\<And>x y z. ?P (x, y) True (a, (b, (c, d), e)) z"
apply (tactic {* AdjustSchematics.tac @{context} 1 *})
oops
end