Skip to content

Latest commit

 

History

History

llama-3_2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Point, Launch, and Serve Vision Llama 3.2 on Kubernetes or Any Cloud

Llama 3.2 family was released by Meta on Sep 25, 2024. It not only includes the latest improved (and smaller) LLM models for chat, but also includes multimodal vision-language models. Let's point and launch it with SkyPilot.

Why use SkyPilot?

  • Point, launch, and serve: simply point to the cloud/Kubernetes cluster you have access to, and launch the model there with a single command.
  • No lock-in: run on any supported cloud — AWS, Azure, GCP, Lambda Cloud, IBM, Samsung, OCI
  • Everything stays in your cloud account (your VMs & buckets)
  • No one else sees your chat history
  • Pay absolute minimum — no managed solution markups
  • Freely choose your own model size, GPU type, number of GPUs, etc, based on scale and budget.

…and you get all of this with 1 click — let SkyPilot automate the infra.

Prerequisites

SkyPilot YAML

Click to see the full recipe YAML
envs:
  MODEL_NAME: meta-llama/Llama-3.2-3B-Instruct
  # MODEL_NAME: meta-llama/Llama-3.2-3B-Vision
  HF_TOKEN: # TODO: Fill with your own huggingface token, or use --env to pass.

service:
  replicas: 2
  # An actual request for readiness probe.
  readiness_probe:
    path: /v1/chat/completions
    post_data:
      model: $MODEL_NAME
      messages:
        - role: user
          content: Hello! What is your name?
      max_tokens: 1

resources:
  accelerators: {L4:1, L40S:1, L40:1, A10g:1, A10:1, A100:1, H100:1}
  # accelerators: {L4, A10g, A10, L40, A40, A100, A100-80GB} # We can use cheaper accelerators for 8B model.
  cpus: 8+
  disk_size: 512  # Ensure model checkpoints can fit.
  disk_tier: best
  ports: 8081  # Expose to internet traffic.

setup: |
  # Install huggingface transformers for the support of Llama 3.2
  pip install git+https://github.com/huggingface/transformers.git@f0eabf6c7da2afbe8425546c092fa3722f9f219e
  pip install vllm==0.6.2

run: |
  echo 'Starting vllm api server...'

  vllm serve $MODEL_NAME \
    --port 8081 \
    --tensor-parallel-size $SKYPILOT_NUM_GPUS_PER_NODE \
    --max-model-len 4096 \
    2>&1

You can also get the full YAML file here.

Point and Launch Llama 3.2

Launch a single spot instance to serve Llama 3.2 on your infra:

$ HF_TOKEN=xxx sky launch llama3_2.yaml -c llama3_2 --env HF_TOKEN
...
------------------------------------------------------------------------------------------------------------------
 CLOUD        INSTANCE                       vCPUs   Mem(GB)   ACCELERATORS   REGION/ZONE     COST ($)   CHOSEN
------------------------------------------------------------------------------------------------------------------
 Kubernetes   4CPU--16GB--1L4                4       16        L4:1           kubernetes      0.00          ✔
 RunPod       1x_L4_SECURE                   4       24        L4:1           CA              0.44
 GCP          g2-standard-4                  4       16        L4:1           us-east4-a      0.70
 AWS          g6.xlarge                      4       16        L4:1           us-east-1       0.80
 AWS          g5.xlarge                      4       16        A10G:1         us-east-1       1.01
 RunPod       1x_L40_SECURE                  16      48        L40:1          CA              1.14
 Fluidstack   L40_48GB::1                    32      60        L40:1          CANADA          1.15
 AWS          g6e.xlarge                     4       32        L40S:1         us-east-1       1.86
 Cudo         sapphire-rapids-h100_1x4v8gb   4       8         H100:1         ca-montreal-3   2.86
 Fluidstack   H100_PCIE_80GB::1              28      180       H100:1         CANADA          2.89
 Azure        Standard_NV36ads_A10_v5        36      440       A10:1          eastus          3.20
 GCP          a2-highgpu-1g                  12      85        A100:1         us-central1-a   3.67
 RunPod       1x_H100_SECURE                 16      80        H100:1         CA              4.49
 Azure        Standard_NC40ads_H100_v5       40      320       H100:1         eastus          6.98
------------------------------------------------------------------------------------------------------------------

Wait until the model is ready (this can take 10+ minutes).

🎉 Congratulations! 🎉 You have now launched the Llama 3.2 Instruct LLM on your infra.

Chat with Llama 3.2 with OpenAI API

To curl /v1/chat/completions:

ENDPOINT=$(sky status --endpoint 8081 llama3_2)

curl http://$ENDPOINT/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "meta-llama/Llama-3.2-3B-Instruct",
    "messages": [
      {
        "role": "system",
        "content": "You are a helpful assistant."
      },
      {
        "role": "user",
        "content": "Who are you?"
      }
    ]
  }' | jq .

Example outputs:

{
  "id": "chat-e7b6d2a2d2934bcab169f82812601baf",
  "object": "chat.completion",
  "created": 1727291780,
  "model": "meta-llama/Llama-3.2-3B-Instruct",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "I'm an artificial intelligence model known as Llama. Llama stands for \"Large Language Model Meta AI.\"",
        "tool_calls": []
      },
      "logprobs": null,
      "finish_reason": "stop",
      "stop_reason": null
    }
  ],
  "usage": {
    "prompt_tokens": 45,
    "total_tokens": 68,
    "completion_tokens": 23
  },
  "prompt_logprobs": null
}

To stop the instance:

sky stop llama3_2

To shut down all resources:

sky down llama3_2

Point and Launch Vision Llama 3.2

Let's launch a vision llama now! The multimodal capacity of Llama-3.2 could open up a lot of new use cases. We will go with the largest 11B model here.

$ HF_TOKEN=xxx sky launch llama3_2-vision-11b.yaml -c llama3_2-vision --env HF_TOKEN
------------------------------------------------------------------------------------------------------------------
 CLOUD        INSTANCE                       vCPUs   Mem(GB)   ACCELERATORS   REGION/ZONE     COST ($)   CHOSEN
------------------------------------------------------------------------------------------------------------------
 Kubernetes   2CPU--8GB--1H100               2       8         H100:1         kubernetes      0.00          ✔
 RunPod       1x_L40_SECURE                  16      48        L40:1          CA              1.14
 Fluidstack   L40_48GB::1                    32      60        L40:1          CANADA          1.15
 AWS          g6e.xlarge                     4       32        L40S:1         us-east-1       1.86
 RunPod       1x_A100-80GB_SECURE            8       80        A100-80GB:1    CA              1.99
 Cudo         sapphire-rapids-h100_1x2v4gb   2       4         H100:1         ca-montreal-3   2.83
 Fluidstack   H100_PCIE_80GB::1              28      180       H100:1         CANADA          2.89
 GCP          a2-highgpu-1g                  12      85        A100:1         us-central1-a   3.67
 Azure        Standard_NC24ads_A100_v4       24      220       A100-80GB:1    eastus          3.67
 RunPod       1x_H100_SECURE                 16      80        H100:1         CA              4.49
 GCP          a2-ultragpu-1g                 12      170       A100-80GB:1    us-central1-a   5.03
 Azure        Standard_NC40ads_H100_v5       40      320       H100:1         eastus          6.98
------------------------------------------------------------------------------------------------------------------

Chat with Vision Llama 3.2

ENDPOINT=$(sky status --endpoint 8081 llama3_2-vision)

curl http://$ENDPOINT/v1/chat/completions \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer token' \
    --data '{
        "model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
        "messages": [
        {
            "role": "user",
            "content": [
                {"type" : "text", "text": "Turn this logo into ASCII art."},
                {"type": "image_url", "image_url": {"url": "https://pbs.twimg.com/profile_images/1584596138635632640/HWexMoH5_400x400.jpg"}}
            ]
        }],
        "max_tokens": 1024
    }' | jq .

Example output (parsed):

  1. Output 1
-------------
-        -
-   -   -
-   -   -
-        -
-------------
  1. Output 2
        ^_________
       /          \\
      /            \\
     /______________\\
     |               |
     |               |
     |_______________|
       \\            /
        \\          /
         \\________/
Raw output
{
  "id": "chat-c341b8a0b40543918f3bb2fef68b0952",
  "object": "chat.completion",
  "created": 1727295337,
  "model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Sure, here is the logo in ASCII art:\n\n------------- \n-        - \n-   -   - \n-   -   - \n-        - \n------------- \n\nNote that this is a very simple representation and does not capture all the details of the original logo.",
        "tool_calls": []
      },
      "logprobs": null,
      "finish_reason": "stop",
      "stop_reason": null
    }
  ],
  "usage": {
    "prompt_tokens": 18,
    "total_tokens": 73,
    "completion_tokens": 55
  },
  "prompt_logprobs": null
}

Serving Llama-3: scaling up with SkyServe

After playing with the model, you can deploy the model with autoscaling and load-balancing using SkyServe.

With no change to the YAML, launch a fully managed service on your infra:

HF_TOKEN=xxx sky serve up llama3_2-vision-11b.yaml -n llama3_2 --env HF_TOKEN

Wait until the service is ready:

watch -n10 sky serve status llama3_2
Example outputs:
Services
NAME  VERSION  UPTIME  STATUS  REPLICAS  ENDPOINT
llama3_2  1        35s     READY   2/2       xx.yy.zz.100:30001

Service Replicas
SERVICE_NAME  ID  VERSION  IP            LAUNCHED     RESOURCES                       STATUS  REGION
llama3_2          1   1        xx.yy.zz.121  18 mins ago  1x GCP([Spot]{'A100-80GB': 8})  READY   us-east4
llama3_2          2   1        xx.yy.zz.245  18 mins ago  1x GCP([Spot]{'A100-80GB': 8})  READY   us-east4

Get a single endpoint that load-balances across replicas:

ENDPOINT=$(sky serve status --endpoint llama3_2)

Tip: SkyServe fully manages the lifecycle of your replicas. For example, if a spot replica is preempted, the controller will automatically replace it. This significantly reduces the operational burden while saving costs.

To curl the endpoint:

curl http://$ENDPOINT/v1/chat/completions \
    -H 'Content-Type: application/json' \
    -H 'Authorization: Bearer token' \
    --data '{
        "model": "meta-llama/Llama-3.2-11B-Vision-Instruct",
        "messages": [
        {
            "role": "user",
            "content": [
                {"type" : "text", "text": "Covert this logo to ASCII art"},
                {"type": "image_url", "image_url": {"url": "https://pbs.twimg.com/profile_images/1584596138635632640/HWexMoH5_400x400.jpg"}}
            ]
        }],
        "max_tokens": 2048
    }' | jq .

To shut down all resources:

sky serve down llama3

See more details in SkyServe docs.

Developing and Finetuning Llama 3 series

SkyPilot also simplifies the development and finetuning of Llama 3 series. Check out the development and finetuning guides: Develop and Finetune.