-
Notifications
You must be signed in to change notification settings - Fork 10
/
demo_utils.py
368 lines (306 loc) · 13.4 KB
/
demo_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import sys
import cv2
import yaml
import imageio
import numpy as np
import torch
import torch.nn.functional as F
sys.path.append("./face-vid2vid")
from sync_batchnorm import DataParallelWithCallback
from modules.generator import OcclusionAwareSPADEGenerator
from modules.keypoint_detector import KPDetector, HEEstimator
from animate import normalize_kp
from batch_face import RetinaFace
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
def load_checkpoints(config_path, checkpoint_path):
with open(config_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
generator = OcclusionAwareSPADEGenerator(**config["model_params"]["generator_params"], **config["model_params"]["common_params"])
# convert to half precision to speed up
generator.cuda().half()
kp_detector = KPDetector(**config["model_params"]["kp_detector_params"], **config["model_params"]["common_params"])
# the result will be wrong if converted to half precision, not sure why
kp_detector.cuda() # .half()
he_estimator = HEEstimator(**config["model_params"]["he_estimator_params"], **config["model_params"]["common_params"])
# the result will be wrong if converted to half precision, not sure why
he_estimator.cuda() # .half()
print("Loading checkpoints")
checkpoint = torch.load(checkpoint_path)
generator.load_state_dict(checkpoint["generator"])
kp_detector.load_state_dict(checkpoint["kp_detector"])
he_estimator.load_state_dict(checkpoint["he_estimator"])
generator = DataParallelWithCallback(generator)
kp_detector = DataParallelWithCallback(kp_detector)
he_estimator = DataParallelWithCallback(he_estimator)
generator.eval()
kp_detector.eval()
he_estimator.eval()
print("Model successfully loaded!")
return generator, kp_detector, he_estimator
def headpose_pred_to_degree(pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
pred = F.softmax(pred, dim=1)
degree = torch.sum(pred * idx_tensor, axis=1) * 3 - 99
return degree
def get_rotation_matrix(yaw, pitch, roll):
yaw = yaw / 180 * 3.14
pitch = pitch / 180 * 3.14
roll = roll / 180 * 3.14
roll = roll.unsqueeze(1)
pitch = pitch.unsqueeze(1)
yaw = yaw.unsqueeze(1)
pitch_mat = torch.cat(
[
torch.ones_like(pitch),
torch.zeros_like(pitch),
torch.zeros_like(pitch),
torch.zeros_like(pitch),
torch.cos(pitch),
-torch.sin(pitch),
torch.zeros_like(pitch),
torch.sin(pitch),
torch.cos(pitch),
],
dim=1,
)
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
yaw_mat = torch.cat(
[
torch.cos(yaw),
torch.zeros_like(yaw),
torch.sin(yaw),
torch.zeros_like(yaw),
torch.ones_like(yaw),
torch.zeros_like(yaw),
-torch.sin(yaw),
torch.zeros_like(yaw),
torch.cos(yaw),
],
dim=1,
)
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
roll_mat = torch.cat(
[
torch.cos(roll),
-torch.sin(roll),
torch.zeros_like(roll),
torch.sin(roll),
torch.cos(roll),
torch.zeros_like(roll),
torch.zeros_like(roll),
torch.zeros_like(roll),
torch.ones_like(roll),
],
dim=1,
)
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
rot_mat = torch.einsum("bij,bjk,bkm->bim", pitch_mat, yaw_mat, roll_mat)
return rot_mat
def keypoint_transformation(kp_canonical, he, estimate_jacobian=False, free_view=False, yaw=0, pitch=0, roll=0, output_coord=False):
kp = kp_canonical["value"]
if not free_view:
yaw, pitch, roll = he["yaw"], he["pitch"], he["roll"]
yaw = headpose_pred_to_degree(yaw)
pitch = headpose_pred_to_degree(pitch)
roll = headpose_pred_to_degree(roll)
else:
if yaw is not None:
yaw = torch.tensor([yaw]).cuda()
else:
yaw = he["yaw"]
yaw = headpose_pred_to_degree(yaw)
if pitch is not None:
pitch = torch.tensor([pitch]).cuda()
else:
pitch = he["pitch"]
pitch = headpose_pred_to_degree(pitch)
if roll is not None:
roll = torch.tensor([roll]).cuda()
else:
roll = he["roll"]
roll = headpose_pred_to_degree(roll)
t, exp = he["t"], he["exp"]
rot_mat = get_rotation_matrix(yaw, pitch, roll)
# keypoint rotation
kp_rotated = torch.einsum("bmp,bkp->bkm", rot_mat, kp)
# keypoint translation
t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1)
kp_t = kp_rotated + t
# add expression deviation
exp = exp.view(exp.shape[0], -1, 3)
kp_transformed = kp_t + exp
if estimate_jacobian:
jacobian = kp_canonical["jacobian"]
jacobian_transformed = torch.einsum("bmp,bkps->bkms", rot_mat, jacobian)
else:
jacobian_transformed = None
if output_coord:
return {"value": kp_transformed, "jacobian": jacobian_transformed}, {
"yaw": float(yaw.cpu().numpy()),
"pitch": float(pitch.cpu().numpy()),
"roll": float(roll.cpu().numpy()),
}
return {"value": kp_transformed, "jacobian": jacobian_transformed}
def get_square_face(coords, image):
x1, y1, x2, y2 = coords
# expand the face region by 1.5 times
length = max(x2 - x1, y2 - y1) // 2
x1 = x1 - length * 0.5
x2 = x2 + length * 0.5
y1 = y1 - length * 0.5
y2 = y2 + length * 0.5
# get square image
center = (x1 + x2) // 2, (y1 + y2) // 2
length = max(x2 - x1, y2 - y1) // 2
x1 = max(int(round(center[0] - length)), 0)
x2 = min(int(round(center[0] + length)), image.shape[1])
y1 = max(int(round(center[1] - length)), 0)
y2 = min(int(round(center[1] + length)), image.shape[0])
return image[y1:y2, x1:x2]
def smooth_coord(last_coord, current_coord, smooth_factor=0.2):
change = np.array(current_coord) - np.array(last_coord)
# smooth the change to 0.1 times
change = change * smooth_factor
return (np.array(last_coord) + np.array(change)).astype(int).tolist()
class FaceAnimationClass:
def __init__(self, source_image_path=None, use_sr=False):
assert source_image_path is not None, "source_image_path is None, please set source_image_path"
config_path = os.path.join(os.path.dirname(__file__), "face-vid2vid/config/vox-256-spade.yaml")
# save to local cache to speed loading
checkpoint_path = os.path.join(os.path.expanduser("~"), ".cache/torch/hub/checkpoints/FaceMapping.pth.tar")
if not os.path.exists(checkpoint_path):
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
from gdown import download
file_id = "11ZgyjKI5OcB7klcsIdPpCCX38AIX8Soc"
download(id=file_id, output=checkpoint_path, quiet=False)
if use_sr:
from GPEN.face_enhancement import FaceEnhancement
self.faceenhancer = FaceEnhancement(
size=256, model="GPEN-BFR-256", use_sr=False, sr_model="realesrnet_x2", channel_multiplier=1, narrow=0.5, use_facegan=True
)
# load checkpoints
self.generator, self.kp_detector, self.he_estimator = load_checkpoints(config_path=config_path, checkpoint_path=checkpoint_path)
source_image = cv2.cvtColor(cv2.imread(source_image_path), cv2.COLOR_RGB2BGR).astype(np.float32) / 255.
source_image = cv2.resize(source_image, (256, 256), interpolation=cv2.INTER_AREA)
source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
self.source = source.cuda()
# initilize face detectors
self.face_detector = RetinaFace(gpu_id=0) if torch.cuda.is_available() else RetinaFace(gpu_id=-1)
self.detect_interval = 8
self.smooth_factor = 0.2
# load base frame and blank frame
self.base_frame = cv2.imread(source_image_path) if not use_sr else self.faceenhancer.process(cv2.imread(source_image_path))[0]
self.base_frame = cv2.resize(self.base_frame, (256, 256))
self.blank_frame = np.ones(self.base_frame.shape, dtype=np.uint8) * 255
cv2.putText(self.blank_frame, "Face not", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.putText(self.blank_frame, "detected!", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# count for frame
self.n_frame = 0
# initilize variables
self.first_frame = True
self.last_coords = None
self.coords = None
self.use_sr = use_sr
self.kp_source = None
self.kp_driving_initial = None
def _conver_input_frame(self, frame):
frame = cv2.resize(frame, (256, 256), interpolation=cv2.INTER_NEAREST).astype(np.float32) / 255.0
return torch.tensor(frame[np.newaxis]).permute(0, 3, 1, 2).cuda()
def _process_first_frame(self, frame):
print("Processing first frame")
# function to process the first frame
faces = self.face_detector(frame, cv=True)
if len(faces) == 0:
raise ValueError("Face is not detected")
else:
self.coords = faces[0][0]
face = get_square_face(self.coords, frame)
self.last_coords = self.coords
# get the keypoint and headpose from the source image
with torch.no_grad():
self.kp_canonical = self.kp_detector(self.source)
self.he_source = self.he_estimator(self.source)
face_input = self._conver_input_frame(face)
he_driving_initial = self.he_estimator(face_input)
self.kp_driving_initial, coordinates = keypoint_transformation(self.kp_canonical, he_driving_initial, output_coord=True)
self.kp_source = keypoint_transformation(
self.kp_canonical, self.he_source, free_view=True, yaw=coordinates["yaw"], pitch=coordinates["pitch"], roll=coordinates["roll"]
)
def _inference(self, frame):
# function to process the rest frames
with torch.no_grad():
self.n_frame += 1
if self.first_frame:
self._process_first_frame(frame)
self.first_frame = False
else:
pass
if self.n_frame % self.detect_interval == 0:
faces = self.face_detector(frame, cv=True)
if len(faces) == 0:
raise ValueError("Face is not detected")
else:
self.coords = faces[0][0]
self.coords = smooth_coord(self.last_coords, self.coords, self.smooth_factor)
face = get_square_face(self.coords, frame)
self.last_coords = self.coords
face_input = self._conver_input_frame(face)
he_driving = self.he_estimator(face_input)
kp_driving = keypoint_transformation(self.kp_canonical, he_driving)
kp_norm = normalize_kp(
kp_source=self.kp_source,
kp_driving=kp_driving,
kp_driving_initial=self.kp_driving_initial,
use_relative_movement=True,
adapt_movement_scale=True,
)
out = self.generator(self.source, kp_source=self.kp_source, kp_driving=kp_norm, fp16=True)
image = np.transpose(out["prediction"].data.cpu().numpy(), [0, 2, 3, 1])[0]
image = (np.array(image).astype(np.float32) * 255).astype(np.uint8)
result = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return face, result
def inference(self, frame):
# function to inference, input frame, output cropped face and its result
try:
if frame is not None:
face, result = self._inference(frame)
if self.use_sr:
result, _, _ = self.faceenhancer.process(result)
result = cv2.resize(result, (256, 256))
return face, result
except Exception as e:
print(e)
self.first_frame = True
self.n_frame = 0
return self.blank_frame, self.base_frame
# if __name__ == "__main__":
# from tqdm import tqdm
# import time
# faceanimation = FaceAnimationClass(source_image_path="./assets/source.jpg", use_sr=False)
# video_path = "./assets/driving.mp4"
# capture = cv2.VideoCapture(video_path)
# fps = capture.get(cv2.CAP_PROP_FPS)
# frames = []
# _, frame = capture.read()
# while frame is not None:
# frames.append(frame)
# _, frame = capture.read()
# capture.release()
# output_frames = []
# time_start = time.time()
# for frame in tqdm(frames):
# face, result = faceanimation.inference(frame)
# show = cv2.hconcat([cv2.resize(face, (result.shape[1], result.shape[0])), result])
# output_frames.append(show)
# time_end = time.time()
# print("Time cost: %.2f" % (time_end - time_start), "FPS: %.2f" % (len(frames) / (time_end - time_start)))
# writer = imageio.get_writer("result.mp4", fps=fps, quality=9, macro_block_size=1, codec="libx264", pixelformat="yuv420p")
# for frame in output_frames:
# writer.append_data(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# # writer.append_data(frame)
# writer.close()
# print("Video saved to result.mp4")