forked from Tencent/FaceDetection-DSFD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fddb_test.py
executable file
·339 lines (279 loc) · 12.4 KB
/
fddb_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.autograd import Variable
from data import WIDERFace_ROOT , WIDERFace_CLASSES as labelmap
from PIL import Image
from data import WIDERFaceDetection, WIDERFaceAnnotationTransform, WIDERFace_CLASSES, WIDERFace_ROOT, BaseTransform , TestBaseTransform
from data import *
import torch.utils.data as data
from face_ssd import build_ssd
import pdb
import numpy as np
import cv2
import math
#import matplotlib.pyplot as plt
import time
from scipy.misc import imread, imsave, imshow, imresize
#plt.switch_backend('agg')
#split_dir = '/data1/home/changanwang/fddb/FDDB-folds'#/media/rs/0E06CD1706CD0127/Kapok/WiderFace/Dataset/tfrecords
#data_dir = '/data1/home/changanwang/fddb/originalPics'#/media/rs/0E06CD1706CD0127/Kapok/WiderFace/Dataset/tfrecords
#det_dir = '/data1/home/changanwang/fddb/results1'#/media/rs/0E06CD1706CD0127/Kapok/WiderFace/Dataset/tfrecords
parser = argparse.ArgumentParser(description='DSFD: Dual Shot Face Detector')
parser.add_argument('--trained_model', default='weights/WIDERFace_DSFD_RES152.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--split_dir', default='./fddb/FDDB-folds',
type=str, help='Dir to folds')
parser.add_argument('--data_dir', default='./fddb/originalPics',
type=str, help='Dir to all images')
parser.add_argument('--det_dir', default='./fddb/results1',
type=str, help='Dir to save results')
parser.add_argument('--visual_threshold', default=0.01, type=float,
help='Final confidence threshold')
parser.add_argument('--cuda', default=True, type=bool,
help='Use cuda to train model')
args = parser.parse_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def detect_face(image, shrink):
x = image
if shrink != 1:
x = cv2.resize(image, None, None, fx=shrink, fy=shrink, interpolation=cv2.INTER_LINEAR)
#print('shrink:{}'.format(shrink))
width = x.shape[1]
height = x.shape[0]
x = x.astype(np.float32)
x -= np.array([104, 117, 123],dtype=np.float32)
x = torch.from_numpy(x).permute(2, 0, 1)
x = x.unsqueeze(0)
with torch.no_grad():
x = Variable(x.cuda())
#net.priorbox = PriorBoxLayer(width,height)
y = net(x)
detections = y.data
scale = torch.Tensor([width, height, width, height])
boxes=[]
scores = []
for i in range(detections.size(1)):
j = 0
while detections[0,i,j,0] >= 0.01:
score = detections[0,i,j,0].cpu().numpy()
pt = (detections[0, i, j, 1:]*scale).cpu().numpy()
boxes.append([pt[0],pt[1],pt[2],pt[3]])
scores.append(score)
j += 1
if j >= detections.size(2):
break
det_conf = np.array(scores)
boxes = np.array(boxes)
if boxes.shape[0] == 0:
return np.array([[0,0,0,0,0.001]])
det_xmin = boxes[:,0] / shrink
det_ymin = boxes[:,1] / shrink
det_xmax = boxes[:,2] / shrink
det_ymax = boxes[:,3] / shrink
det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
keep_index = np.where(det[:, 4] >= 0)[0]
det = det[keep_index, :]
return det
def multi_scale_test(image, max_im_shrink):
# shrink detecting and shrink only detect big face
st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink
det_s = detect_face(image, st)
if max_im_shrink > 0.75:
det_s = np.row_stack((det_s,detect_face(image,0.75)))
index = np.where(np.maximum(det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0]
det_s = det_s[index, :]
# enlarge one times
bt = min(2, max_im_shrink) if max_im_shrink > 1 else (st + max_im_shrink) / 2
det_b = detect_face(image, bt)
# enlarge small iamge x times for small face
if max_im_shrink > 1.5:
det_b = np.row_stack((det_b,detect_face(image,1.5)))
if max_im_shrink > 2:
bt *= 2
while bt < max_im_shrink: # and bt <= 2:
det_b = np.row_stack((det_b, detect_face(image, bt)))
bt *= 2
det_b = np.row_stack((det_b, detect_face(image, max_im_shrink)))
# enlarge only detect small face
if bt > 1:
index = np.where(np.minimum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
else:
index = np.where(np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def multi_scale_test_pyramid(image, max_shrink):
# shrink detecting and shrink only detect big face
det_b = detect_face(image, 0.25)
index = np.where(
np.maximum(det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1)
> 30)[0]
det_b = det_b[index, :]
st = [1.25, 1.75, 2.25]
for i in range(len(st)):
if (st[i] <= max_shrink):
det_temp = detect_face(image, st[i])
# enlarge only detect small face
if st[i] > 1:
index = np.where(
np.minimum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) < 100)[0]
det_temp = det_temp[index, :]
else:
index = np.where(
np.maximum(det_temp[:, 2] - det_temp[:, 0] + 1,
det_temp[:, 3] - det_temp[:, 1] + 1) > 30)[0]
det_temp = det_temp[index, :]
det_b = np.row_stack((det_b, det_temp))
return det_b
def flip_test(image, shrink):
image_f = cv2.flip(image, 1)
det_f = detect_face(image_f, shrink)
det_t = np.zeros(det_f.shape)
det_t[:, 0] = image.shape[1] - det_f[:, 2]
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = image.shape[1] - det_f[:, 0]
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# get needed merge det and delete these det
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
return dets
def bbox_vote2(det):
dets = np.zeros((0, 5), dtype=np.float32)
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# get needed merge det and delete these det
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
return dets
# load net
cfg = widerface_640
num_classes = len(WIDERFace_CLASSES) + 1 # +1 background
net = build_ssd('test', cfg['min_dim'], num_classes) # initialize SSD
net.load_state_dict(torch.load(args.trained_model))
net.cuda()
net.eval()
print('Finished loading model!')
from utils import draw_toolbox
def test_fddbface():
# evaluation
cuda = args.cuda
thresh=cfg['conf_thresh']
os.makedirs(args.det_dir, exist_ok=True)
all_splits = sorted([_ for _ in os.listdir(args.split_dir) if 'ellipseList' not in _])
for folder_ind in range(1, 11):
with open(os.path.join(args.split_dir, all_splits[folder_ind-1]), 'r') as fp:
read_lines = fp.readlines()
all_images = [line.strip() for line in read_lines]
sys.stdout.write('>> Predicting folder %d/%d\n' % (folder_ind, 10))
sys.stdout.flush()
#print(all_images)
with open(os.path.join(args.det_dir, 'fold-{:02d}-out.txt'.format(folder_ind)), 'wt') as f:
all_image_length = len(all_images)
for image_ind, image_name in enumerate(all_images):
sys.stdout.write('\r>> Predicting image %d/%d' % (image_ind, all_image_length))
sys.stdout.flush()
#np_image = imread(os.path.join(data_dir, image_name+'.jpg'))
np_image = cv2.imread(os.path.join(args.data_dir, image_name+'.jpg'))
if len(np_image.shape) < 3:
np_image = np.stack((np_image,) * 3, -1)
image = np_image#torch.from_numpy(np_image).permute(2, 0, 1)
#max_im_shrink = ( (2000.0*2000.0) / (img.shape[0] * img.shape[1])) ** 0.5
max_im_shrink = (0x7fffffff / 200.0 / (image.shape[0] * image.shape[1])) ** 0.5 # the max size of input image for caffe
max_im_shrink = 3 if max_im_shrink > 3 else max_im_shrink
shrink = max_im_shrink if max_im_shrink < 1 else 1
det0 = detect_face(image, shrink) # origin test
det1 = flip_test(image, shrink) # flip test
det = np.row_stack((det0, det1))
dets = bbox_vote(det)
#dets = bbox_vote2(det0)
# if not os.path.exists(save_path + event):
# os.makedirs(save_path + event)
# f = open(save_path + event + '/' + img_id.split(".")[0] + '.txt', 'w')
# #f = open(save_path + str(event[0][0].encode('utf-8'))[2:-1] + '/' + im_name + '.txt', 'w')
# write_to_txt(f, dets , event, img_id)
bbox_xmin = dets[:, 0]
bbox_ymin = dets[:, 1]
bbox_xmax = dets[:, 2]
bbox_ymax = dets[:, 3]
scores = dets[:, 4]
bbox_height = bbox_ymax - bbox_ymin + 1
bbox_width = bbox_xmax - bbox_xmin + 1
img_to_draw = draw_toolbox.absolute_bboxes_draw_on_img(np_image, scores, dets, thickness=2)
imsave(os.path.join('./debug/{}.jpg').format(image_ind), img_to_draw)
valid_mask = np.logical_and(np.logical_and((bbox_height > 1), (bbox_width > 1)), (scores > 0.05))
f.write('{:s}\n'.format(image_name))
f.write('{}\n'.format(np.count_nonzero(valid_mask)))
#print(valid_mask.shape[0], bbox_xmin.shape[0], bboxes.shape[0], bbox_width.shape[0], scores.shape[0])
for det_ind in range(valid_mask.shape[0]):
if not valid_mask[det_ind]:
continue
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(np.floor(bbox_xmin[det_ind]), np.floor(bbox_ymin[det_ind]), np.ceil(bbox_width[det_ind]), np.ceil(bbox_height[det_ind]), scores[det_ind]))
sys.stdout.write('\n')
sys.stdout.flush()
if __name__=="__main__":
test_fddbface()