forked from dspinellis/OpenMIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmine.cpp
919 lines (822 loc) · 27.9 KB
/
mine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/*-
* Copyright 2011-2012 Diomidis Spinellis
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <set>
#include <limits>
#include <cassert>
#include <algorithm> // sort
#include <iostream> // cout
#include <fstream> // ifstream
#include <cstdio> // perror
#include <cstdlib> // exit
#include <cmath> // log2
#include <iterator> // ostream_iterator
#include "Point.h"
#include "Partition.h"
#include "ExtensiblePartition.h"
#include "entropy.h"
#include "debug.h"
typedef vector< vector<double> > matrix;
/*
* Missing from STL. See Effective STL item 36 and
* http://stackoverflow.com/questions/1448817/why-there-is-no-stdcopy-if-algorithm
*/
template <class InputIterator, class OutputIterator, class Predicate>
OutputIterator copy_if(InputIterator begin, InputIterator end,
OutputIterator result, Predicate pred) {
while (begin != end) {
if (pred(*begin))
*result++ = *begin;
++begin;
}
return result;
}
using namespace std;
// Read a vector from the specified file
void
read_vector(const char *name, vector <double> &v)
{
ifstream vfile(name);
if (!vfile.is_open()) {
perror(name);
exit(1);
}
for (;;) {
double d;
vfile >> d;
if (!vfile.good())
break;
v.push_back(d);
}
cout << name << endl;
for (vector <double>::const_iterator i = v.begin(); i != v.end(); i++)
cout << *i << endl;
}
template <typename T>
void
show_vector(const vector <T> &v)
{
copy(v.begin(), v.end(), ostream_iterator<T>(cout, "\t"));
cout << endl;
}
template <typename T>
void
show_matrix(const vector <vector <T> > &m)
{
for (typename vector <vector <T> >::const_iterator i = m.begin(); i != m.end(); i++)
show_vector(*i);
}
/*
* Algorithm 3
* "Returns a map Q: D -> {1, ...., y} such that Q(p) is the row assignment of the point p and there
* is approximately the same number of points in each row"
*/
Partition
equipartition_y_axis(const vector <Point> &points, int y)
{
assert(y > 1);
// Create vector of pointers to points sorted by y
vector <const Point *> data(points.size());
for (int i = 0; i < points.size(); i++)
data[i] = &(points[i]);
sort(data.begin(), data.end(), less_y());
int npoints = data.size();
int i = 0; // Input position in data
int desired_row_size = npoints / y;
Partition q(1);
int current_row = 0; // Output position in q
int currently_assigned = 0; // Equivalent of #
if (DP())
cout << "\nn=" << npoints << endl;
do {
if (DP())
cout << "current_row=" << current_row << " i=" << i << " currently_assigned=" << currently_assigned << " desired_row_size=" << desired_row_size << endl;
// Line 6: Cardinality of S is all that is needed; exploit ordering by y
int same_points = 1; // Number of points with same y (|S|)
for (int j = i + 1; j < npoints && data[j]->y == data[i]->y; j++)
same_points++;
if (DP())
cout << var(currently_assigned) << var(same_points) << var(desired_row_size) <<
" LHS=" << abs(currently_assigned + same_points - desired_row_size) <<
" RHS=" << abs(currently_assigned - desired_row_size) << endl;
if (currently_assigned == 0 ||
// Distance from target to handle tie breaks
abs(currently_assigned + same_points - desired_row_size) <= abs(currently_assigned - desired_row_size)) {
if (DP())
cout << "Assign points to row " << current_row << endl;
for (int j = 0; j < same_points; j++) {
q[current_row].insert(data[i + j]);
if (DP())
cout << "Assign point " << i + j << " to row " << current_row << endl;
}
i += same_points;
currently_assigned += same_points;
if (DP())
cout << "i=" << i << " currently_assigned=" << currently_assigned << " current_row=" << current_row << endl;
if (y - current_row)
desired_row_size = (npoints - i + currently_assigned) / (y - current_row);
else
desired_row_size = numeric_limits<int>::max();
} else {
current_row++;
if (DP())
cout << "Advance current_row to " << current_row << endl;
q.push_back(Partition::value_type());
currently_assigned = 0;
}
} while(i < npoints);
return q;
}
/*
* Partition data by "drawing x-axis partition lines only between runs of consecutive points that fall
* in the same row of the y-axis partition Q."
* "Return the minimal partition that separates every pair of points that lie in distinct clumps."
* Not listed in pseudocode.
*/
Partition
get_clumps_partition(const vector <Point> &points, const Partition &q)
{
// Create vector of pointers to points sorted by x
vector <const Point *> data(points.size());
for (int i = 0; i < points.size(); i++)
data[i] = &(points[i]);
sort(data.begin(), data.end(), less_x());
// Create a map from a point ordinal to its y partition
vector <const Partition::value_type *> ypartition_map(points.size());
for (Partition::const_iterator i = q.begin(); i != q.end(); i++)
for (Partition::value_type::const_iterator j = i->begin(); j != i->end(); j++)
ypartition_map[*j - &*(points.begin())] = &*i;
Partition clumps;
Partition::value_type const *current_y_partition = NULL;
for (int i = 0; i < data.size(); i++) {
if (DP())
cout << "Look at point " << i << ": " << *data[i] << endl;
// Indirect through data to get correct point ordinals
if (ypartition_map[data[i] - &*points.begin()] != current_y_partition) {
clumps.push_back(Partition::value_type()); // Start a new partition
current_y_partition = ypartition_map[data[i] - &*points.begin()];
}
clumps.back().insert(data[i]);
}
return clumps;
}
/*
* Repartition by merging true clumps into superclumps in a way that aims to have each
* superclump contain approximately the same number of points returning at most max_clumps
* clumps.
* npoints is the total number of points.
* Not listed in pseudocode.
*/
Partition
get_superclumps_partition(const Partition &input_partitions, int npoints, int max_clumps)
{
assert(!input_partitions.empty());
assert(npoints > 0);
assert(max_clumps > 0);
if (input_partitions.size() <= max_clumps)
return (input_partitions);
int points_per_partition = npoints / max_clumps;
Partition q(1);
int output_partition = 0; // Output position in q
int currently_assigned = 0; // Points assigned in this iteration
int total_assigned = 0; // Points assigned over all iterations
Partition::const_iterator i = input_partitions.begin();
do {
if (DP()) {
cout << var(abs(currently_assigned + (int)i->size() - points_per_partition)) << endl;
cout << var(abs(currently_assigned - points_per_partition)) << endl;
}
if (currently_assigned == 0 ||
// Distance from target to handle tie breaks
abs(currently_assigned + (int)i->size() - points_per_partition) <= abs(currently_assigned - points_per_partition)) {
q[output_partition].insert(i->begin(), i->end());
currently_assigned += i->size();
total_assigned += i->size();
i++;
if (max_clumps - output_partition)
points_per_partition = (npoints - total_assigned + currently_assigned) / (max_clumps - output_partition);
else
points_per_partition = numeric_limits<int>::max();
if (DP()) {
cout << var(npoints) << var(total_assigned) << var(currently_assigned) << endl;
cout << var(output_partition) << var(points_per_partition) << endl;
}
} else {
output_partition++;
q.push_back(Partition::value_type());
currently_assigned = 0;
}
} while(i != input_partitions.end());
return q;
}
// Return the point ordinals corresponding to each clump
vector <int>
get_clump_point_ordinals(const Partition &clumps)
{
vector <int> result;
result.reserve(clumps.size());
result.push_back(0);
for (Partition::const_iterator i = clumps.begin(); i != clumps.end(); i++)
result.push_back(result.back() + i->size());
assert(result.size() == clumps.size() + 1);
return result;
}
/*
* Algorithm 2
* "Returns a list of scores (I_2 ... I_x) such that each I_l is the maximum value of I(P;Q) over all
* partitions P of size l."
* Max_clumps (\^k in the text) is the maximum number of clumps to use.
*/
vector <double>
optimize_x_axis(const vector <Point> &points, const Partition &q, int x, int max_clumps)
{
assert(x > 1);
Partition clumps(get_superclumps_partition(get_clumps_partition(points, q), points.size(), max_clumps));
vector <int> c(get_clump_point_ordinals(clumps));
if (DP()) {
cout << "Clump ordinals" << endl;
show_vector(c);
}
int k = clumps.size(); // Compared to Algorithm 2 this is k + 1
matrix I(k, vector <double> (x + 1));
vector < vector <ExtensiblePartition> > P(k, vector <ExtensiblePartition> (x + 1));
double hq = H(q);
ExtensiblePartition::set_clumps(&clumps);
ExtensiblePartition::set_q(&q);
// Find the optimal partitions of size 2 for elements of 2 to k clumps
for (int t = 2; t < k; t++) {
// Find the best partition point s
int maxs = 0;
double maxh = -numeric_limits<double>::max();
vector <ExtensiblePartition> cand(t + 1); // Candidate partitions
for (int s = 1; s <= t; s++) {
cand[s] = ExtensiblePartition(s, t);
double hdiff = cand[s].hp() - cand[s].hpq();
if (hdiff > maxh) {
maxs = s;
maxh = hdiff;
}
if (DP())
cout << var(t) << var(s) << var(hdiff) << var(maxh) << var(maxs) << endl;
}
assert(maxs != 0);
P[t][2] = cand[maxs];
I[t][2] = hq + maxh;
}
// Inductively build the rest of the table of optimal partitions
// Build up for larger and larger partitions
for (int l = 3; l <= x; l++)
// Try adding various clump points on the right
for (int t = l; t < k; t++) {
int maxs = 0;
double maxf = -numeric_limits<double>::max();
vector <ExtensiblePartition> cand(t + 1); // Candidate partitions
// Find the best partition to use from the previously found partitions
for (int s = l - 1; s <= t; s++) {
cand[s] = P[s][l - 1].add_point(t);
if (cand[s].number_of_columns() < l)
continue;
double sum = 0;
double column_points = cand[s].number_of_horizontal_partition_points(l);
if (column_points == 0)
continue;
for (int i = 1; i <= q.size(); i++) {
double cell_points = cand[s].number_of_cell_points(i, l);
if (cell_points == 0)
continue;
sum += cell_points / c[t] * log2(cell_points / column_points);
}
double f = (double)c[s] / (double) c[t] * (I[s][l - 1] - hq) + sum;
if (DP())
cout << var(l) << var(t) << var(s) << var(f) << endl;
if (f > maxf) {
maxs = s;
maxf = f;
}
}
assert(maxs != 0);
P[t][l] = cand[maxs];
I[t][l] = hq + P[t][l].hp() - P[t][l].hpq();
}
// Fill-in values missed due to t's loop upper limit
for (int l = k; l <= x; l++)
I[k - 1][l] = I[k - 1][k - 1];
return I[k - 1];
}
/*
* Algorithm 4
* "Returns a set of mutual information scores (0, 0, I_{2,y} ... I_{x,y}) such that I_{i,j} is
* heuristically close to the highest achievable mutual information score using i rows and j columns."
* Max_clumps (\^k in the text) is the maximum number of clumps to use.
*/
vector <double>
max_mi(vector <Point> &data, int x, int y, int max_clumps)
{
assert(x > 1);
assert(y > 1);
assert(max_clumps > 1);
Partition q(equipartition_y_axis(data, y));
return optimize_x_axis(data, q, x, max_clumps);
}
// Functor for flipping x, y
struct flip : public unary_function<const Point &, Point> {
Point operator()(const Point &p) { return Point(p.y, p.x); }
};
/*
* Algorithm 5
* Return \forall where x * y < b the matrix with the highest information content
* The clump factor (c in the text) "determines by what factor clumps may outnumber columns
* when OptimizeXAxis is called. When trying to partition the x-axis into x columns, the
* algorithm will start with at most cx clumps."
*/
matrix
characteristic_matrix(vector <Point> &data, int b, int clump_factor)
{
assert(clump_factor > 0);
assert(b > 3);
// data2 (D\bot) is (y1, x1), (y2, x2) ...
vector <Point> data2;
transform(data.begin(), data.end(), back_inserter(data2), flip());
// Calculate the information content matrix (lines 2-6)
matrix mi(2, vector<double>(b / 2, 0));
matrix mi2(2, vector<double>(b / 2, 0));
for (int y = 2; y <= b / 2; y++) {
int x = b / y;
if (1 || DP()) {
cout << "x=" << x << " y=" << y << " b=" << b << endl;
vector <double> mmi(max_mi(data, x, y, clump_factor * x));
cout << "max_mi" << endl;
show_vector(mmi);
mi.push_back(mmi);
} else
mi.push_back(max_mi(data, x, y, clump_factor * x));
mi2.push_back(max_mi(data2, x, y, clump_factor * x));
}
// Fill-in the characteristic matrix (lines 7-10)
matrix cm(b / 2 + 1, vector<double>(b / 2 + 1, 0));
for (int x = 2; x <= b / 2; x++)
for (int y = 2; y <= b / 2; y++) {
if (x * y > b)
continue;
double ixy = max(mi[y][x], mi2[x][y]);
cm[y][x] = ixy / min(log2(x), log2(y));
}
return cm;
}
void test_equipartition();
void test_get_clumps_partition();
void test_get_superclumps_partition();
void test_H();
void test_ExtensiblePartition();
void test_CounterOutputIterator();
void test_get_clump_point_ordinals();
// Return the maximal information coefficient
double
mic(const matrix &cm)
{
double result = -numeric_limits<double>::max();
for (matrix::const_iterator i = cm.begin(); i != cm.end(); i++)
for (matrix::value_type::const_iterator j = i->begin(); j != i->end(); j++)
if (*j > result)
result = *j;
return result;
}
// Return the maximum asymmetry score
double
mas(const matrix &cm)
{
double result = -numeric_limits<double>::max();
for (int i = 0; i < cm.size(); i++)
for (int j = 0; j < cm[i].size(); j++) {
double v = fabs(cm[i][j] - cm[j][i]);
if (v > result)
result = v;
}
return result;
}
// Return the maximum edge value
double
mev(const matrix &cm)
{
double result = -numeric_limits<double>::max();
for (int i = 0; i < cm.size(); i++)
if (cm[i][2] > result) // Or maybe 1 XXX?
result = cm[i][2];
for (int i = 0; i < cm[2].size(); i++)
if (cm[2][i] > result)
result = cm[2][i]; // Or maybe 1 XXX?
return result;
}
// Return the complexity
double
mcn(const matrix &cm, double mic, double epsilon)
{
double result = numeric_limits<double>::max();
for (int i = 0; i < cm.size(); i++)
for (int j = 0; j < cm[i].size(); j++) {
if (cm[i][j] < (1 - epsilon) * mic)
continue;
double v = log2((i + 1) * (j + 1));
if (v < result)
result = v;
}
return result;
}
int
main(int argc, char *argv[])
{
vector <Point> points;
double grid_exponent = 0.6;
int clumping = 15;
#ifdef TEST
test_equipartition();
test_get_clumps_partition();
test_get_superclumps_partition();
test_H();
test_ExtensiblePartition();
test_CounterOutputIterator();
test_get_clump_point_ordinals();
cout << "All tests finished" << endl;
#endif
// Read space-separated points
ifstream pfile(argv[1]);
if (!pfile.is_open()) {
perror(argv[1]);
exit(1);
}
for (;;) {
Point p;
pfile >> p.x >> p.y;
if (!pfile.good())
break;
points.push_back(p);
}
// Print the points read
cout << argv[1] << endl;
for (vector <Point>::const_iterator i = points.begin(); i != points.end(); i++)
cout << i->x << ' ' << i->y << endl;
int b = pow(points.size(), grid_exponent);
if (b < 4) {
cerr << "not enough points" << endl;
exit(1);
}
matrix cm(characteristic_matrix(points, b, clumping));
cout << "Characteristic matrix:" << endl;
show_matrix(cm);
cout << endl;
// Report results
cout << "X var,Y var,MIC (strength),MAS (non-monotonicity),"
"MEV (functionality),MCN (complexity)" << endl;
double m;
cout << "x, y, " <<
(m = mic(cm)) << ',' <<
mas(cm) << ',' <<
mev(cm) << ',' <<
mcn(cm, m, 0) << endl;
return 0;
}
#ifdef TEST
/*
* Return a partition of points as indicated by their corresponding ordinals.
*/
static Partition
point_to_ptr(const vector <Point> &points, const vector <int> ordinals)
{
// Calculate number of partitions
set <int> ordinal_set(ordinals.begin(), ordinals.end());
Partition result(ordinal_set.size());
int prev = -1;
int n = 0;
for (vector <int>::const_iterator i = ordinals.begin(); i != ordinals.end(); i++)
result[*i].insert(&points[n++]);
return result;
}
void
test_equipartition()
{
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Point p[] = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}, {6, 6}, {7, 7}, {7, 7}, {7, 7}, {8, 8}, {9, 9}, {10, 10}, {11, 11}};
{ // 2 elements into 2 rows
vector <Point> test(p, p + 2);
Partition got(equipartition_y_axis(test, 2));
Partition expect(point_to_ptr(test, {0, 1}));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 3 elements into 3 rows
vector <Point> test(p, p + 3);
Partition got(equipartition_y_axis(test, 3));
Partition expect(point_to_ptr(test, {0, 1, 2}));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 6 elements into 3 rows
vector <Point> test(p, p + 6);
Partition got(equipartition_y_axis(test, 3));
Partition expect(point_to_ptr(test, {0, 0, 1, 1, 2, 2, }));
if (DP()) {
show_vector(test);
cout << expect;
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 3 elements into 2 rows
vector <Point> test(p, p + 3);
Partition got(equipartition_y_axis(test, 2));
Partition expect(point_to_ptr(test, {0, 1, 1}));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 8 elements into 3 rows
vector <Point> test(p, p + 8);
Partition got(equipartition_y_axis(test, 3));
Partition expect(point_to_ptr(test, {0, 0, 1, 1, 1, 2, 2, 2, }));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 9 elements into 3 rows with tie
vector <Point> test(p, p + 9);
Partition got(equipartition_y_axis(test, 3));
Partition expect(point_to_ptr(test, {0, 0, 0, 1, 1, 1, 1, 2, 2, }));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 10 elements into 5 rows with two ties
vector <Point> test(p, p + 10);
Partition got(equipartition_y_axis(test, 5));
Partition expect(point_to_ptr(test, {0, 0, 1, 1, 2, 2, 2, 3, 3, 3, }));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 2 elements into 2 rows unsorted
vector <Point> test(p, p + 2);
swap(*test.begin(), *(test.begin() + 1));
Partition expect(point_to_ptr(test, {1, 0}));
Partition got(equipartition_y_axis(test, 2));
if (DP()) {
show_vector(test);
cout << expect;
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
{ // 22 elements into 2 rows with 20 ties
vector <Point> test(22, Point(10,10));
test[0] = Point(1,1);
test[1] = Point(2,2);
Partition got(equipartition_y_axis(test, 2));
vector <int> expect_ordinals(22, 1);
expect_ordinals[0] = expect_ordinals[1] = 0;
Partition expect(point_to_ptr(test, expect_ordinals));
if (DP()) {
show_vector(test);
cout << got;
}
assert(equal(expect.begin(), expect.end(), got.begin()));
}
}
void
test_get_clumps_partition()
{
/*
* 3 x
* 2 x
* 1 x x
* 0 x x
* 0 1 2 3 4 5
*
* Consider the above points.
* Their Y axis equipartition would be {{(0,0), (5,0)}, {(1, 1), (2, 1)}, {(3,2), (4,3)}}
* Partition ordinals: 0 0 1 1 2 2
* The corresponding clumps would be {{(0,0)}, {(1, 1), (2, 1)}, {(3,2), (4, 3)}, {(5,0)}}
* Partition ordinals: 0 1 1 2 2 3
*/
Point p[] = {{0, 0}, {1, 1}, {3, 2}, {2, 1}, {5, 0}, {4, 3}};
{ // Nonconsecutive and consecutive points
vector <Point> test(p, p + 6);
// Six points into three bins
Partition got_y(equipartition_y_axis(test, 3));
Partition expect_y(point_to_ptr(test, {0, 1, 2, 1, 0, 2}));
Partition got_clumps(get_clumps_partition(test, got_y));
Partition expect_clumps(point_to_ptr(test, {0, 1, 2, 1, 3, 2}));
if (DP()) {
cout << "Vector" << endl;
show_vector(test);
cout << "Expected Y equipartition" << endl;
cout << expect_y;
cout << "Obtained Y equipartition" << endl;
cout << got_y;
cout << "Expected clumps" << endl;
cout << expect_clumps;
cout << "Obtained clumps" << endl;
cout << got_clumps;
}
assert(equal(expect_y.begin(), expect_y.end(), got_y.begin()));
assert(equal(expect_clumps.begin(), expect_clumps.end(), got_clumps.begin()));
}
}
void
test_get_superclumps_partition()
{
const int MANY_PARTITIONS = 1000;
const int FEW_PARTITIONS = 100;
const int MAX_POINTS_PER_PARTITION = 50;
int total_points = 0;
// Create many partitions with a random number of points each up to MAX_POINTS_PER_PARTITION
Partition many(MANY_PARTITIONS);
srand(42); // Ensure deterministic behavior
// Fill in partitions with a random amount of points
for (Partition::iterator i = many.begin(); i != many.end(); i++) {
int npoints = rand() % MAX_POINTS_PER_PARTITION;
for (int j = 0; j < npoints; j++)
i->insert(new Point(rand(), rand()));
total_points += npoints;
}
Partition few(get_superclumps_partition(many, total_points, FEW_PARTITIONS));
if (DP())
cout << "few.size()=" << few.size() << endl;
assert(few.size() == FEW_PARTITIONS);
int points_in_few = 0;
for (Partition::const_iterator i = few.begin(); i != few.end(); i++) {
assert(i->size() < total_points / FEW_PARTITIONS + MAX_POINTS_PER_PARTITION - 1);
points_in_few += i->size();
for (Partition::value_type::const_iterator j = i->begin(); j != i->end(); j++)
delete *j;
}
assert(points_in_few == total_points);
}
void
test_H()
{
// Should be an exact result!
assert(H(vector <double>({1./8, 1./4, 1./8, 1./2})) == 7./4);
// Above example on partitions
vector <Point> test({{1, 1}, {1, 1}, {1, 1}, {1, 1}, {2, 2,}, {2, 2,}, {3, 3}, {4, 4}});
Partition got(equipartition_y_axis(test, 4));
Partition expect(point_to_ptr(test, {0, 0, 0, 0, 1, 1, 2, 3}));
assert(equal(expect.begin(), expect.end(), got.begin()));
assert(H(got) == 7./4);
}
void
test_ExtensiblePartition()
{
/*
* 4 x
* 3 x
* 2 x
* 1 x x
* 0 x x
* 0 1 2 3 4 5 6
*
* Consider the above points.
* Their Y axis equipartition will be {{(0,0), (5,0)}, {(1, 1), (2, 1)}, {(3,2), (4,3), (6, 4)}}
* Partition ordinals: 0 0 1 1 2 2 2
* The corresponding clumps will be {{(0,0)}, {(1, 1), (2, 1)}, {(3,2), (4, 3)}, {(5,0)}, {(6,4)}}
* 1 2 3 4
*/
Point p[] = {{0, 0}, {1, 1}, {3, 2}, {2, 1}, {5, 0}, {4, 3}, {6, 4}};
vector <Point> test(p, p + 7);
// Six points into three bins
Partition q(equipartition_y_axis(test, 3));
Partition clumps(get_clumps_partition(test, q));
ExtensiblePartition::set_q(&q);
ExtensiblePartition::set_clumps(&clumps);
// Test ctors
ExtensiblePartition a12(1, 2);
assert(a12.number_of_horizontal_partition_points(1) == 1);
assert(a12.number_of_horizontal_partition_points(2) == 2);
ExtensiblePartition a13(1, 3);
assert(a13.number_of_horizontal_partition_points(1) == 1);
assert(a13.number_of_horizontal_partition_points(2) == 4);
ExtensiblePartition a23(2, 3);
assert(a23.number_of_horizontal_partition_points(1) == 3);
assert(a23.number_of_horizontal_partition_points(2) == 2);
ExtensiblePartition a24(2, 4);
assert(a24.number_of_horizontal_partition_points(1) == 3);
assert(a24.number_of_horizontal_partition_points(2) == 3);
ExtensiblePartition a25(2, 5);
assert(a25.number_of_horizontal_partition_points(1) == 3);
assert(a25.number_of_horizontal_partition_points(2) == 4);
// Test add_point
ExtensiblePartition a234(a23.add_point(4));
assert(a234.number_of_horizontal_partition_points(1) == 3);
assert(a234.number_of_horizontal_partition_points(2) == 2);
assert(a234.number_of_horizontal_partition_points(3) == 1);
ExtensiblePartition a124(a12.add_point(4));
assert(a124.number_of_horizontal_partition_points(1) == 1);
assert(a124.number_of_horizontal_partition_points(2) == 2);
assert(a124.number_of_horizontal_partition_points(3) == 3);
// Verify entropy of the partition across the horizontal axis
assert(a124.hp() == H(vector <double>({1./6, 2./6, 3./6})));
/*
* 4 | | |x
* 3 | | x |
* 2 | |x |
*----+---+-----+-
* 1 |x x| |
*----+---+-----+-
* 0 x| | x|
* 0|1 2|3 4 5 6
* | | |
*/
// Verify number_of_cell_points
assert(a124.number_of_cell_points(1, 1) == 1);
assert(a124.number_of_cell_points(1, 2) == 0);
assert(a124.number_of_cell_points(1, 3) == 1);
assert(a124.number_of_cell_points(2, 1) == 0);
assert(a124.number_of_cell_points(2, 2) == 2);
assert(a124.number_of_cell_points(2, 3) == 0);
assert(a124.number_of_cell_points(3, 1) == 0);
assert(a124.number_of_cell_points(3, 2) == 0);
assert(a124.number_of_cell_points(3, 3) == 2);
// Verify entropy of the points across both partitions
assert(fabs(a124.hpq() - H(vector <double>({
0, 0, 2./6,
0, 2./6, 0./6,
1./6, 0, 1./6,
}))) < 1e-10);
// Test add_point of previously added point
ExtensiblePartition a1244(a124.add_point(4));
assert(a1244.number_of_horizontal_partition_points(1) == 1);
assert(a1244.number_of_horizontal_partition_points(2) == 2);
assert(a1244.number_of_horizontal_partition_points(3) == 3);
ExtensiblePartition a122(a12.add_point(2));
assert(a122.number_of_horizontal_partition_points(1) == 1);
assert(a122.number_of_horizontal_partition_points(2) == 2);
}
void
test_get_clump_point_ordinals()
{
/*
* 3 x
* 2 x
* 1 x x
* 0 x x
* 0 1 2 3 4 5
*
* Consider the above points.
* Their Y axis equipartition would be {{(0,0), (5,0)}, {(1, 1), (2, 1)}, {(3,2), (4,3)}}
* Partition ordinals: 0 0 1 1 2 2
* The corresponding clumps would be {{(0,0)}, {(1, 1), (2, 1)}, {(3,2), (4, 3)}, {(5,0)}}
* Partition ordinals: 0 1 1 2 2 3
* Point ordinals 0 1 3 5 6
*/
Point p[] = {{0, 0}, {1, 1}, {3, 2}, {2, 1}, {5, 0}, {4, 3}};
// Six points into three bins
vector <Point> test(p, p + 6);
Partition ypartition(equipartition_y_axis(test, 3));
Partition clumps(get_clumps_partition(test, ypartition));
vector <int> ordinals(get_clump_point_ordinals(clumps));
if (DP()) {
cout << clumps;
show_vector(ordinals);
}
// According to Yakir we must get
assert(ordinals[0] == 0);
assert(ordinals[1] == 1);
assert(ordinals[2] == 3);
assert(ordinals[3] == 5);
assert(ordinals[4] == 6);
}
void
test_CounterOutputIterator()
{
vector<int> v(5, 0);
int n = 0;
CounterOutputIterator count_elements(n);
copy(v.begin(), v.end(), count_elements);
assert(n == 5);
}
#endif