forked from dspinellis/OpenMIC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExtensiblePartition.h
213 lines (186 loc) · 6.27 KB
/
ExtensiblePartition.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*-
* Copyright 2011-2012 Diomidis Spinellis
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef EXTENSIBLEPARTITION_H
#define EXTENSIBLEPARTITION_H
#include <set>
#include <vector>
#include <cassert>
#include <iterator>
#include <algorithm> // set_intersection
using namespace std;
#include "Partition.h"
#include "entropy.h"
#include "debug.h"
// An output iterator used for counting generated elements
class CounterOutputIterator :
public iterator<output_iterator_tag, void, void, void, void>
{
public:
explicit CounterOutputIterator(int &c) : counter(c) {}
CounterOutputIterator & operator*() { return *this; }
template <typename T> void operator=(T const& rhs) { }
CounterOutputIterator & operator=(const CounterOutputIterator &rhs) {
counter = rhs.counter;
return *this;
}
CounterOutputIterator operator++() {
CounterOutputIterator new_obj(*this);
counter++;
return new_obj;
}
CounterOutputIterator & operator++(int) { counter++; return *this; }
private:
int &counter;
};
/*
* A partial partition over the X axis clumps whose endpoint can be extended.
* The clump numbers specified are 1-based.
*/
class ExtensiblePartition {
public:
typedef vector <int> Points; // Points storage type
private:
static const Partition *q; // Partition along the vertical axis ===
static const Partition *clumps; // All possible partitions on the horizontal axis |||
Points points; // The ordinals of clumps over which this actually partitions
public:
static void set_clumps(const Partition *p) {
clumps = p;
}
static void set_q(const Partition *p) {
q = p;
}
// Extensible partition placeholder
ExtensiblePartition() {}
// Create a new adjustable partition of size 2
ExtensiblePartition(int partition, int end) :
points(3) {
assert(partition > 0);
assert(partition < clumps->size());
assert(end >= 0);
assert(end <= clumps->size());
assert(partition <= end);
points[0] = 0;
points[1] = partition;
points[2] = end;
}
int number_of_columns() const {
return points.size() - 1;
}
// Return a new ExtensiblePartition with an added partition point at its end
ExtensiblePartition add_point(int p) const {
assert(p >= points.back());
ExtensiblePartition r(*this);
if (p == points.back())
return (r);
r.points.push_back(p);
return (r);
}
// Return the number of points in the specified horizontal axis partition ending in p
inline int number_of_horizontal_partition_points(int p) {
assert(p > 0);
assert(p <= points.size());
int n = 0;
Partition::const_iterator start(clumps->begin());
advance(start, points[p - 1]);
Partition::const_iterator end(clumps->begin());
advance(end, points[p]);
for (Partition::const_iterator i = start; i != end; i++)
n += i->size();
if (DP())
cout << var(p) << var(n) << endl;
return n;
}
// Return the points in the specified horizontal axis partition p
set <const Point *> horizontal_partition_points(int p) {
assert(p > 0);
assert(p <= points.size());
set <const Point *> result;
Partition::const_iterator start(clumps->begin());
advance(start, points[p - 1]);
Partition::const_iterator end(clumps->begin());
advance(end, points[p]);
/*
* Form the union of all sets.
* This is efficient, because
* insert range is linear in N if the range is already sorted by value_comp().
*/
for (Partition::const_iterator i = start; i != end; i++)
result.insert(i->begin(), i->end());
return result;
}
// Return H(p)
double hp() {
// Create probability vector for H(p)
// TODO: Cache the following two as members and adjust them in add_point
vector <double> pp;
int npoints = 0;
for (int i = 1; i < points.size(); i++) {
int n = number_of_horizontal_partition_points(i);
pp.push_back(n);
npoints += n;
}
// Convert cardinalities to probability weights
for (vector <double>::iterator i = pp.begin(); i != pp.end(); i++)
*i /= npoints;
return H(pp);
}
// Return the number of points in the specified grid cell
// row and col are 1-based
inline int number_of_cell_points(int row, int col) {
assert(row > 0);
assert(row <= q->size());
assert(col > 0);
assert(col <= points.size());
set <const Point *> hpoints(horizontal_partition_points(col));
const set <const Point *> &vpoints((*q)[row - 1]);
int n = 0;
CounterOutputIterator count_elements(n);
set_intersection(hpoints.begin(), hpoints.end(), vpoints.begin(), vpoints.end(), count_elements);
if (DP()) {
cout << " row=" << row << " col=" << col;
cout << "\nPoints along the horizontal axis:\n";
copy(vpoints.begin(), vpoints.end(), ostream_iterator<const Point *>(cout, " "));
cout << "\nPoints along the vertical axis:\n";
copy(hpoints.begin(), hpoints.end(), ostream_iterator<const Point *>(cout, " "));
cout << "Intersection:\n";
set_intersection(hpoints.begin(), hpoints.end(), vpoints.begin(), vpoints.end(), ostream_iterator<const Point *>(cout, " "));
}
return n;
}
// Return H(p, q)
double hpq() {
// Create probability vector for H(p, q)
// TODO: Cache the following two as members and adjust them in add_point
vector <double> ppq;
int npoints = 0;
for (int row = 1; row <= q->size(); row++)
for (int col = 1; col < points.size(); col++) {
int n = number_of_cell_points(row, col);
ppq.push_back(n);
npoints += n;
}
if (DP()) {
copy(ppq.begin(), ppq.end(), ostream_iterator<double>(cout, "\t"));
cout << endl << var(npoints) << endl;
}
// Convert cardinalities to probability weights
for (vector <double>::iterator i = ppq.begin(); i != ppq.end(); i++)
*i /= npoints;
return H(ppq);
}
};
#endif