-
Notifications
You must be signed in to change notification settings - Fork 0
/
pix2pix.py
803 lines (645 loc) · 34.8 KB
/
pix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import os
import json
import glob
import random
import collections
import math
import time
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", help="path to folder containing images")
parser.add_argument("--mode", required=True, choices=["train", "test", "export"])
parser.add_argument("--output_dir", required=True, help="where to put output files")
parser.add_argument("--seed", type=int)
parser.add_argument("--checkpoint", default=None, help="directory with checkpoint to resume training from or use for testing")
parser.add_argument("--max_steps", type=int, help="number of training steps (0 to disable)")
parser.add_argument("--max_epochs", type=int, help="number of training epochs")
parser.add_argument("--summary_freq", type=int, default=100, help="update summaries every summary_freq steps")
parser.add_argument("--progress_freq", type=int, default=50, help="display progress every progress_freq steps")
parser.add_argument("--trace_freq", type=int, default=0, help="trace execution every trace_freq steps")
parser.add_argument("--display_freq", type=int, default=0, help="write current training images every display_freq steps")
parser.add_argument("--save_freq", type=int, default=5000, help="save model every save_freq steps, 0 to disable")
parser.add_argument("--separable_conv", action="store_true", help="use separable convolutions in the generator")
parser.add_argument("--aspect_ratio", type=float, default=1.0, help="aspect ratio of output images (width/height)")
parser.add_argument("--lab_colorization", action="store_true", help="split input image into brightness (A) and color (B)")
parser.add_argument("--batch_size", type=int, default=1, help="number of images in batch")
parser.add_argument("--which_direction", type=str, default="AtoB", choices=["AtoB", "BtoA"])
parser.add_argument("--ngf", type=int, default=64, help="number of generator filters in first conv layer")
parser.add_argument("--ndf", type=int, default=64, help="number of discriminator filters in first conv layer")
parser.add_argument("--scale_size", type=int, default=286, help="scale images to this size before cropping to 256x256")
parser.add_argument("--flip", dest="flip", action="store_true", help="flip images horizontally")
parser.add_argument("--no_flip", dest="flip", action="store_false", help="don't flip images horizontally")
parser.set_defaults(flip=True)
parser.add_argument("--lr", type=float, default=0.0002, help="initial learning rate for adam")
parser.add_argument("--beta1", type=float, default=0.5, help="momentum term of adam")
parser.add_argument("--l1_weight", type=float, default=100.0, help="weight on L1 term for generator gradient")
parser.add_argument("--gan_weight", type=float, default=1.0, help="weight on GAN term for generator gradient")
# export options
parser.add_argument("--output_filetype", default="png", choices=["png", "jpeg"])
a = parser.parse_args()
EPS = 1e-12
CROP_SIZE = 256
Examples = collections.namedtuple("Examples", "paths, inputs, targets, count, steps_per_epoch")
Model = collections.namedtuple("Model", "outputs, predict_real, predict_fake, discrim_loss, discrim_grads_and_vars, gen_loss_GAN, gen_loss_L1, gen_grads_and_vars, train")
def preprocess(image):
with tf.name_scope("preprocess"):
# [0, 1] => [-1, 1]
return image * 2 - 1
def deprocess(image):
with tf.name_scope("deprocess"):
# [-1, 1] => [0, 1]
return (image + 1) / 2
def preprocess_lab(lab):
with tf.name_scope("preprocess_lab"):
L_chan, a_chan, b_chan = tf.unstack(lab, axis=2)
# L_chan: black and white with input range [0, 100]
# a_chan/b_chan: color channels with input range ~[-110, 110], not exact
# [0, 100] => [-1, 1], ~[-110, 110] => [-1, 1]
return [L_chan / 50 - 1, a_chan / 110, b_chan / 110]
def deprocess_lab(L_chan, a_chan, b_chan):
with tf.name_scope("deprocess_lab"):
# this is axis=3 instead of axis=2 because we process individual images but deprocess batches
return tf.stack([(L_chan + 1) / 2 * 100, a_chan * 110, b_chan * 110], axis=3)
def augment(image, brightness):
# (a, b) color channels, combine with L channel and convert to rgb
a_chan, b_chan = tf.unstack(image, axis=3)
L_chan = tf.squeeze(brightness, axis=3)
lab = deprocess_lab(L_chan, a_chan, b_chan)
rgb = lab_to_rgb(lab)
return rgb
def discrim_conv(batch_input, out_channels, stride):
padded_input = tf.pad(batch_input, [[0, 0], [1, 1], [1, 1], [0, 0]], mode="CONSTANT")
return tf.layers.conv2d(padded_input, out_channels, kernel_size=4, strides=(stride, stride), padding="valid", kernel_initializer=tf.random_normal_initializer(0, 0.02))
def gen_conv(batch_input, out_channels):
# [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, out_channels]
initializer = tf.random_normal_initializer(0, 0.02)
if a.separable_conv:
return tf.layers.separable_conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer)
else:
return tf.layers.conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", kernel_initializer=initializer)
def gen_deconv(batch_input, out_channels):
# [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, out_channels]
initializer = tf.random_normal_initializer(0, 0.02)
if a.separable_conv:
_b, h, w, _c = batch_input.shape
resized_input = tf.image.resize_images(batch_input, [h * 2, w * 2], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return tf.layers.separable_conv2d(resized_input, out_channels, kernel_size=4, strides=(1, 1), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer)
else:
return tf.layers.conv2d_transpose(batch_input, out_channels, kernel_size=4, strides=(2, 2), padding="same", kernel_initializer=initializer)
def lrelu(x, a):
with tf.name_scope("lrelu"):
# adding these together creates the leak part and linear part
# then cancels them out by subtracting/adding an absolute value term
# leak: a*x/2 - a*abs(x)/2
# linear: x/2 + abs(x)/2
# this block looks like it has 2 inputs on the graph unless we do this
x = tf.identity(x)
return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x)
def batchnorm(inputs):
return tf.layers.batch_normalization(inputs, axis=3, epsilon=1e-5, momentum=0.1, training=True, gamma_initializer=tf.random_normal_initializer(1.0, 0.02))
def check_image(image):
assertion = tf.assert_equal(tf.shape(image)[-1], 3, message="image must have 3 color channels")
with tf.control_dependencies([assertion]):
image = tf.identity(image)
if image.get_shape().ndims not in (3, 4):
raise ValueError("image must be either 3 or 4 dimensions")
# make the last dimension 3 so that you can unstack the colors
shape = list(image.get_shape())
shape[-1] = 3
image.set_shape(shape)
return image
# based on https://github.com/torch/image/blob/9f65c30167b2048ecbe8b7befdc6b2d6d12baee9/generic/image.c
def rgb_to_lab(srgb):
with tf.name_scope("rgb_to_lab"):
srgb = check_image(srgb)
srgb_pixels = tf.reshape(srgb, [-1, 3])
with tf.name_scope("srgb_to_xyz"):
linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32)
exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32)
rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask
rgb_to_xyz = tf.constant([
# X Y Z
[0.412453, 0.212671, 0.019334], # R
[0.357580, 0.715160, 0.119193], # G
[0.180423, 0.072169, 0.950227], # B
])
xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz)
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
with tf.name_scope("xyz_to_cielab"):
# convert to fx = f(X/Xn), fy = f(Y/Yn), fz = f(Z/Zn)
# normalize for D65 white point
xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754])
epsilon = 6/29
linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32)
exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32)
fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask
# convert to lab
fxfyfz_to_lab = tf.constant([
# l a b
[ 0.0, 500.0, 0.0], # fx
[116.0, -500.0, 200.0], # fy
[ 0.0, 0.0, -200.0], # fz
])
lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0])
return tf.reshape(lab_pixels, tf.shape(srgb))
def lab_to_rgb(lab):
with tf.name_scope("lab_to_rgb"):
lab = check_image(lab)
lab_pixels = tf.reshape(lab, [-1, 3])
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
with tf.name_scope("cielab_to_xyz"):
# convert to fxfyfz
lab_to_fxfyfz = tf.constant([
# fx fy fz
[1/116.0, 1/116.0, 1/116.0], # l
[1/500.0, 0.0, 0.0], # a
[ 0.0, 0.0, -1/200.0], # b
])
fxfyfz_pixels = tf.matmul(lab_pixels + tf.constant([16.0, 0.0, 0.0]), lab_to_fxfyfz)
# convert to xyz
epsilon = 6/29
linear_mask = tf.cast(fxfyfz_pixels <= epsilon, dtype=tf.float32)
exponential_mask = tf.cast(fxfyfz_pixels > epsilon, dtype=tf.float32)
xyz_pixels = (3 * epsilon**2 * (fxfyfz_pixels - 4/29)) * linear_mask + (fxfyfz_pixels ** 3) * exponential_mask
# denormalize for D65 white point
xyz_pixels = tf.multiply(xyz_pixels, [0.950456, 1.0, 1.088754])
with tf.name_scope("xyz_to_srgb"):
xyz_to_rgb = tf.constant([
# r g b
[ 3.2404542, -0.9692660, 0.0556434], # x
[-1.5371385, 1.8760108, -0.2040259], # y
[-0.4985314, 0.0415560, 1.0572252], # z
])
rgb_pixels = tf.matmul(xyz_pixels, xyz_to_rgb)
# avoid a slightly negative number messing up the conversion
rgb_pixels = tf.clip_by_value(rgb_pixels, 0.0, 1.0)
linear_mask = tf.cast(rgb_pixels <= 0.0031308, dtype=tf.float32)
exponential_mask = tf.cast(rgb_pixels > 0.0031308, dtype=tf.float32)
srgb_pixels = (rgb_pixels * 12.92 * linear_mask) + ((rgb_pixels ** (1/2.4) * 1.055) - 0.055) * exponential_mask
return tf.reshape(srgb_pixels, tf.shape(lab))
def load_examples():
if a.input_dir is None or not os.path.exists(a.input_dir):
raise Exception("input_dir does not exist")
input_paths = glob.glob(os.path.join(a.input_dir, "*.jpg"))
decode = tf.image.decode_jpeg
if len(input_paths) == 0:
input_paths = glob.glob(os.path.join(a.input_dir, "*.png"))
decode = tf.image.decode_png
if len(input_paths) == 0:
raise Exception("input_dir contains no image files")
def get_name(path):
name, _ = os.path.splitext(os.path.basename(path))
return name
# if the image names are numbers, sort by the value rather than asciibetically
# having sorted inputs means that the outputs are sorted in test mode
if all(get_name(path).isdigit() for path in input_paths):
input_paths = sorted(input_paths, key=lambda path: int(get_name(path)))
else:
input_paths = sorted(input_paths)
with tf.name_scope("load_images"):
path_queue = tf.train.string_input_producer(input_paths, shuffle=a.mode == "train")
reader = tf.WholeFileReader()
paths, contents = reader.read(path_queue)
raw_input = decode(contents)
raw_input = tf.image.convert_image_dtype(raw_input, dtype=tf.float32)
assertion = tf.assert_equal(tf.shape(raw_input)[2], 3, message="image does not have 3 channels")
with tf.control_dependencies([assertion]):
raw_input = tf.identity(raw_input)
raw_input.set_shape([None, None, 3])
if a.lab_colorization:
# load color and brightness from image, no B image exists here
lab = rgb_to_lab(raw_input)
L_chan, a_chan, b_chan = preprocess_lab(lab)
a_images = tf.expand_dims(L_chan, axis=2)
b_images = tf.stack([a_chan, b_chan], axis=2)
else:
# break apart image pair and move to range [-1, 1]
width = tf.shape(raw_input)[1] # [height, width, channels]
a_images = preprocess(raw_input[:,:width//2,:])
b_images = preprocess(raw_input[:,width//2:,:])
if a.which_direction == "AtoB":
inputs, targets = [a_images, b_images]
elif a.which_direction == "BtoA":
inputs, targets = [b_images, a_images]
else:
raise Exception("invalid direction")
# synchronize seed for image operations so that we do the same operations to both
# input and output images
seed = random.randint(0, 2**31 - 1)
def transform(image):
r = image
if a.flip:
r = tf.image.random_flip_left_right(r, seed=seed)
# area produces a nice downscaling, but does nearest neighbor for upscaling
# assume we're going to be doing downscaling here
r = tf.image.resize_images(r, [a.scale_size, a.scale_size], method=tf.image.ResizeMethod.AREA)
offset = tf.cast(tf.floor(tf.random_uniform([2], 0, a.scale_size - CROP_SIZE + 1, seed=seed)), dtype=tf.int32)
if a.scale_size > CROP_SIZE:
r = tf.image.crop_to_bounding_box(r, offset[0], offset[1], CROP_SIZE, CROP_SIZE)
elif a.scale_size < CROP_SIZE:
raise Exception("scale size cannot be less than crop size")
return r
with tf.name_scope("input_images"):
input_images = transform(inputs)
with tf.name_scope("target_images"):
target_images = transform(targets)
paths_batch, inputs_batch, targets_batch = tf.train.batch([paths, input_images, target_images], batch_size=a.batch_size)
steps_per_epoch = int(math.ceil(len(input_paths) / a.batch_size))
return Examples(
paths=paths_batch,
inputs=inputs_batch,
targets=targets_batch,
count=len(input_paths),
steps_per_epoch=steps_per_epoch,
)
def create_generator(generator_inputs, generator_outputs_channels):
layers = []
# encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf]
with tf.variable_scope("encoder_1"):
output = gen_conv(generator_inputs, a.ngf)
layers.append(output)
layer_specs = [
a.ngf * 2, # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2]
a.ngf * 4, # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4]
a.ngf * 8, # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8]
a.ngf * 8, # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8]
a.ngf * 8, # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8]
a.ngf * 8, # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8]
a.ngf * 8, # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8]
]
for out_channels in layer_specs:
with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
rectified = lrelu(layers[-1], 0.2)
# [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
convolved = gen_conv(rectified, out_channels)
output = batchnorm(convolved)
layers.append(output)
layer_specs = [
(a.ngf * 8, 0.5), # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2]
(a.ngf * 8, 0.5), # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2]
(a.ngf * 8, 0.5), # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2]
(a.ngf * 8, 0.0), # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2]
(a.ngf * 4, 0.0), # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2]
(a.ngf * 2, 0.0), # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2]
(a.ngf, 0.0), # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2]
]
num_encoder_layers = len(layers)
for decoder_layer, (out_channels, dropout) in enumerate(layer_specs):
skip_layer = num_encoder_layers - decoder_layer - 1
with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
if decoder_layer == 0:
# first decoder layer doesn't have skip connections
# since it is directly connected to the skip_layer
input = layers[-1]
else:
input = tf.concat([layers[-1], layers[skip_layer]], axis=3)
rectified = tf.nn.relu(input)
# [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]
output = gen_deconv(rectified, out_channels)
output = batchnorm(output)
if dropout > 0.0:
output = tf.nn.dropout(output, keep_prob=1 - dropout)
layers.append(output)
# decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels]
with tf.variable_scope("decoder_1"):
input = tf.concat([layers[-1], layers[0]], axis=3)
rectified = tf.nn.relu(input)
output = gen_deconv(rectified, generator_outputs_channels)
output = tf.tanh(output)
layers.append(output)
return layers[-1]
def create_model(inputs, targets):
def create_discriminator(discrim_inputs, discrim_targets):
n_layers = 3
layers = []
# 2x [batch, height, width, in_channels] => [batch, height, width, in_channels * 2]
input = tf.concat([discrim_inputs, discrim_targets], axis=3)
# layer_1: [batch, 256, 256, in_channels * 2] => [batch, 128, 128, ndf]
with tf.variable_scope("layer_1"):
convolved = discrim_conv(input, a.ndf, stride=2)
rectified = lrelu(convolved, 0.2)
layers.append(rectified)
# layer_2: [batch, 128, 128, ndf] => [batch, 64, 64, ndf * 2]
# layer_3: [batch, 64, 64, ndf * 2] => [batch, 32, 32, ndf * 4]
# layer_4: [batch, 32, 32, ndf * 4] => [batch, 31, 31, ndf * 8]
for i in range(n_layers):
with tf.variable_scope("layer_%d" % (len(layers) + 1)):
out_channels = a.ndf * min(2**(i+1), 8)
stride = 1 if i == n_layers - 1 else 2 # last layer here has stride 1
convolved = discrim_conv(layers[-1], out_channels, stride=stride)
normalized = batchnorm(convolved)
rectified = lrelu(normalized, 0.2)
layers.append(rectified)
# layer_5: [batch, 31, 31, ndf * 8] => [batch, 30, 30, 1]
with tf.variable_scope("layer_%d" % (len(layers) + 1)):
convolved = discrim_conv(rectified, out_channels=1, stride=1)
output = tf.sigmoid(convolved)
layers.append(output)
return layers[-1]
with tf.variable_scope("generator"):
out_channels = int(targets.get_shape()[-1])
outputs = create_generator(inputs, out_channels)
# create two copies of discriminator, one for real pairs and one for fake pairs
# they share the same underlying variables
with tf.name_scope("real_discriminator"):
with tf.variable_scope("discriminator"):
# 2x [batch, height, width, channels] => [batch, 30, 30, 1]
predict_real = create_discriminator(inputs, targets)
with tf.name_scope("fake_discriminator"):
with tf.variable_scope("discriminator", reuse=True):
# 2x [batch, height, width, channels] => [batch, 30, 30, 1]
predict_fake = create_discriminator(inputs, outputs)
with tf.name_scope("discriminator_loss"):
# minimizing -tf.log will try to get inputs to 1
# predict_real => 1
# predict_fake => 0
discrim_loss = tf.reduce_mean(-(tf.log(predict_real + EPS) + tf.log(1 - predict_fake + EPS)))
with tf.name_scope("generator_loss"):
# predict_fake => 1
# abs(targets - outputs) => 0
gen_loss_GAN = tf.reduce_mean(-tf.log(predict_fake + EPS))
gen_loss_L1 = tf.reduce_mean(tf.abs(targets - outputs))
gen_loss = gen_loss_GAN * a.gan_weight + gen_loss_L1 * a.l1_weight
with tf.name_scope("discriminator_train"):
discrim_tvars = [var for var in tf.trainable_variables() if var.name.startswith("discriminator")]
discrim_optim = tf.train.AdamOptimizer(a.lr, a.beta1)
discrim_grads_and_vars = discrim_optim.compute_gradients(discrim_loss, var_list=discrim_tvars)
discrim_train = discrim_optim.apply_gradients(discrim_grads_and_vars)
with tf.name_scope("generator_train"):
with tf.control_dependencies([discrim_train]):
gen_tvars = [var for var in tf.trainable_variables() if var.name.startswith("generator")]
gen_optim = tf.train.AdamOptimizer(a.lr, a.beta1)
gen_grads_and_vars = gen_optim.compute_gradients(gen_loss, var_list=gen_tvars)
gen_train = gen_optim.apply_gradients(gen_grads_and_vars)
ema = tf.train.ExponentialMovingAverage(decay=0.99)
update_losses = ema.apply([discrim_loss, gen_loss_GAN, gen_loss_L1])
global_step = tf.train.get_or_create_global_step()
incr_global_step = tf.assign(global_step, global_step+1)
return Model(
predict_real=predict_real,
predict_fake=predict_fake,
discrim_loss=ema.average(discrim_loss),
discrim_grads_and_vars=discrim_grads_and_vars,
gen_loss_GAN=ema.average(gen_loss_GAN),
gen_loss_L1=ema.average(gen_loss_L1),
gen_grads_and_vars=gen_grads_and_vars,
outputs=outputs,
train=tf.group(update_losses, incr_global_step, gen_train),
)
def save_images(fetches, step=None):
image_dir = os.path.join(a.output_dir, "images")
if not os.path.exists(image_dir):
os.makedirs(image_dir)
filesets = []
for i, in_path in enumerate(fetches["paths"]):
name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8")))
fileset = {"name": name, "step": step}
for kind in ["inputs", "outputs", "targets"]:
filename = name + "-" + kind + ".png"
if step is not None:
filename = "%08d-%s" % (step, filename)
fileset[kind] = filename
out_path = os.path.join(image_dir, filename)
contents = fetches[kind][i]
with open(out_path, "wb") as f:
f.write(contents)
filesets.append(fileset)
return filesets
def append_index(filesets, step=False):
index_path = os.path.join(a.output_dir, "index.html")
if os.path.exists(index_path):
index = open(index_path, "a")
else:
index = open(index_path, "w")
index.write("<html><body><table><tr>")
if step:
index.write("<th>step</th>")
index.write("<th>name</th><th>input</th><th>output</th><th>target</th></tr>")
for fileset in filesets:
index.write("<tr>")
if step:
index.write("<td>%d</td>" % fileset["step"])
index.write("<td>%s</td>" % fileset["name"])
for kind in ["inputs", "outputs", "targets"]:
index.write("<td><img src='images/%s'></td>" % fileset[kind])
index.write("</tr>")
return index_path
def main():
if a.seed is None:
a.seed = random.randint(0, 2**31 - 1)
tf.set_random_seed(a.seed)
np.random.seed(a.seed)
random.seed(a.seed)
if not os.path.exists(a.output_dir):
os.makedirs(a.output_dir)
if a.mode == "test" or a.mode == "export":
if a.checkpoint is None:
raise Exception("checkpoint required for test mode")
# load some options from the checkpoint
options = {"which_direction", "ngf", "ndf", "lab_colorization"}
with open(os.path.join(a.checkpoint, "options.json")) as f:
for key, val in json.loads(f.read()).items():
if key in options:
print("loaded", key, "=", val)
setattr(a, key, val)
# disable these features in test mode
a.scale_size = CROP_SIZE
a.flip = False
for k, v in a._get_kwargs():
print(k, "=", v)
with open(os.path.join(a.output_dir, "options.json"), "w") as f:
f.write(json.dumps(vars(a), sort_keys=True, indent=4))
if a.mode == "export":
# export the generator to a meta graph that can be imported later for standalone generation
if a.lab_colorization:
raise Exception("export not supported for lab_colorization")
input = tf.placeholder(tf.string, shape=[1])
input_data = tf.decode_base64(input[0])
input_image = tf.image.decode_png(input_data)
# remove alpha channel if present
input_image = tf.cond(tf.equal(tf.shape(input_image)[2], 4), lambda: input_image[:,:,:3], lambda: input_image)
# convert grayscale to RGB
input_image = tf.cond(tf.equal(tf.shape(input_image)[2], 1), lambda: tf.image.grayscale_to_rgb(input_image), lambda: input_image)
input_image = tf.image.convert_image_dtype(input_image, dtype=tf.float32)
input_image.set_shape([CROP_SIZE, CROP_SIZE, 3])
batch_input = tf.expand_dims(input_image, axis=0)
with tf.variable_scope("generator"):
batch_output = deprocess(create_generator(preprocess(batch_input), 3))
output_image = tf.image.convert_image_dtype(batch_output, dtype=tf.uint8)[0]
if a.output_filetype == "png":
output_data = tf.image.encode_png(output_image)
elif a.output_filetype == "jpeg":
output_data = tf.image.encode_jpeg(output_image, quality=80)
else:
raise Exception("invalid filetype")
output = tf.convert_to_tensor([tf.encode_base64(output_data)])
key = tf.placeholder(tf.string, shape=[1])
inputs = {
"key": key.name,
"input": input.name
}
tf.add_to_collection("inputs", json.dumps(inputs))
outputs = {
"key": tf.identity(key).name,
"output": output.name,
}
tf.add_to_collection("outputs", json.dumps(outputs))
init_op = tf.global_variables_initializer()
restore_saver = tf.train.Saver()
export_saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
print("loading model from checkpoint")
checkpoint = tf.train.latest_checkpoint(a.checkpoint)
restore_saver.restore(sess, checkpoint)
print("exporting model")
export_saver.export_meta_graph(filename=os.path.join(a.output_dir, "export.meta"))
export_saver.save(sess, os.path.join(a.output_dir, "export"), write_meta_graph=False)
return
examples = load_examples()
print("examples count = %d" % examples.count)
# inputs and targets are [batch_size, height, width, channels]
model = create_model(examples.inputs, examples.targets)
# undo colorization splitting on images that we use for display/output
if a.lab_colorization:
if a.which_direction == "AtoB":
# inputs is brightness, this will be handled fine as a grayscale image
# need to augment targets and outputs with brightness
targets = augment(examples.targets, examples.inputs)
outputs = augment(model.outputs, examples.inputs)
# inputs can be deprocessed normally and handled as if they are single channel
# grayscale images
inputs = deprocess(examples.inputs)
elif a.which_direction == "BtoA":
# inputs will be color channels only, get brightness from targets
inputs = augment(examples.inputs, examples.targets)
targets = deprocess(examples.targets)
outputs = deprocess(model.outputs)
else:
raise Exception("invalid direction")
else:
inputs = deprocess(examples.inputs)
targets = deprocess(examples.targets)
outputs = deprocess(model.outputs)
def convert(image):
if a.aspect_ratio != 1.0:
# upscale to correct aspect ratio
size = [CROP_SIZE, int(round(CROP_SIZE * a.aspect_ratio))]
image = tf.image.resize_images(image, size=size, method=tf.image.ResizeMethod.BICUBIC)
return tf.image.convert_image_dtype(image, dtype=tf.uint8, saturate=True)
# reverse any processing on images so they can be written to disk or displayed to user
with tf.name_scope("convert_inputs"):
converted_inputs = convert(inputs)
with tf.name_scope("convert_targets"):
converted_targets = convert(targets)
with tf.name_scope("convert_outputs"):
converted_outputs = convert(outputs)
with tf.name_scope("encode_images"):
display_fetches = {
"paths": examples.paths,
"inputs": tf.map_fn(tf.image.encode_png, converted_inputs, dtype=tf.string, name="input_pngs"),
"targets": tf.map_fn(tf.image.encode_png, converted_targets, dtype=tf.string, name="target_pngs"),
"outputs": tf.map_fn(tf.image.encode_png, converted_outputs, dtype=tf.string, name="output_pngs"),
}
# summaries
with tf.name_scope("inputs_summary"):
tf.summary.image("inputs", converted_inputs)
with tf.name_scope("targets_summary"):
tf.summary.image("targets", converted_targets)
with tf.name_scope("outputs_summary"):
tf.summary.image("outputs", converted_outputs)
with tf.name_scope("predict_real_summary"):
tf.summary.image("predict_real", tf.image.convert_image_dtype(model.predict_real, dtype=tf.uint8))
with tf.name_scope("predict_fake_summary"):
tf.summary.image("predict_fake", tf.image.convert_image_dtype(model.predict_fake, dtype=tf.uint8))
tf.summary.scalar("discriminator_loss", model.discrim_loss)
tf.summary.scalar("generator_loss_GAN", model.gen_loss_GAN)
tf.summary.scalar("generator_loss_L1", model.gen_loss_L1)
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name + "/values", var)
for grad, var in model.discrim_grads_and_vars + model.gen_grads_and_vars:
tf.summary.histogram(var.op.name + "/gradients", grad)
with tf.name_scope("parameter_count"):
parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in tf.trainable_variables()])
saver = tf.train.Saver(max_to_keep=1)
logdir = a.output_dir if (a.trace_freq > 0 or a.summary_freq > 0) else None
sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=0, saver=None)
with sv.managed_session() as sess:
print("parameter_count =", sess.run(parameter_count))
if a.checkpoint is not None:
print("loading model from checkpoint")
checkpoint = tf.train.latest_checkpoint(a.checkpoint)
saver.restore(sess, checkpoint)
max_steps = 2**32
if a.max_epochs is not None:
max_steps = examples.steps_per_epoch * a.max_epochs
if a.max_steps is not None:
max_steps = a.max_steps
if a.mode == "test":
# testing
# at most, process the test data once
start = time.time()
max_steps = min(examples.steps_per_epoch, max_steps)
for step in range(max_steps):
results = sess.run(display_fetches)
filesets = save_images(results)
for i, f in enumerate(filesets):
print("evaluated image", f["name"])
index_path = append_index(filesets)
print("wrote index at", index_path)
print("rate", (time.time() - start) / max_steps)
else:
# training
start = time.time()
for step in range(max_steps):
def should(freq):
return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1)
options = None
run_metadata = None
if should(a.trace_freq):
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
fetches = {
"train": model.train,
"global_step": sv.global_step,
}
if should(a.progress_freq):
fetches["discrim_loss"] = model.discrim_loss
fetches["gen_loss_GAN"] = model.gen_loss_GAN
fetches["gen_loss_L1"] = model.gen_loss_L1
if should(a.summary_freq):
fetches["summary"] = sv.summary_op
if should(a.display_freq):
fetches["display"] = display_fetches
results = sess.run(fetches, options=options, run_metadata=run_metadata)
if should(a.summary_freq):
print("recording summary")
sv.summary_writer.add_summary(results["summary"], results["global_step"])
if should(a.display_freq):
print("saving display images")
filesets = save_images(results["display"], step=results["global_step"])
append_index(filesets, step=True)
if should(a.trace_freq):
print("recording trace")
sv.summary_writer.add_run_metadata(run_metadata, "step_%d" % results["global_step"])
if should(a.progress_freq):
# global_step will have the correct step count if we resume from a checkpoint
train_epoch = math.ceil(results["global_step"] / examples.steps_per_epoch)
train_step = (results["global_step"] - 1) % examples.steps_per_epoch + 1
rate = (step + 1) * a.batch_size / (time.time() - start)
remaining = (max_steps - step) * a.batch_size / rate
print("progress epoch %d step %d image/sec %0.1f remaining %dm" % (train_epoch, train_step, rate, remaining / 60))
print("discrim_loss", results["discrim_loss"])
print("gen_loss_GAN", results["gen_loss_GAN"])
print("gen_loss_L1", results["gen_loss_L1"])
if should(a.save_freq):
print("saving model")
saver.save(sess, os.path.join(a.output_dir, "model"), global_step=sv.global_step)
if sv.should_stop():
break
main()