-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain_lfw.lua
220 lines (181 loc) · 6.48 KB
/
train_lfw.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
------------------------------------------------------------
--- This code is based on the eyescream code released at
--- https://github.com/facebook/eyescream
--- If you find it usefull consider citing
--- http://arxiv.org/abs/1506.05751
------------------------------------------------------------
require 'hdf5'
require 'nngraph'
require 'cudnn'
require 'torch'
require 'nn'
require 'cunn'
require 'optim'
require 'image'
require 'pl'
require 'paths'
ok, disp = pcall(require, 'display')
if not ok then print('display not found. unable to plot') end
adversarial = require 'lfw_adverserial'
----------------------------------------------------------------------
-- parse command-line options
opt = lapp[[
-s,--save (default "logs512_lfw64") subdirectory to save logs
--saveFreq (default 1) save every saveFreq epochs
-n,--network (default "") reload pretrained network
-p,--plot plot while training
-r,--learningRate (default 0.001) learning rate
-b,--batchSize (default 128) batch size
-m,--momentum (default 0) momentum, for SGD only
--coefL1 (default 0) L1 penalty on the weights
--coefL2 (default 0) L2 penalty on the weights
-t,--threads (default 4) number of threads
-g,--gpu (default 0) gpu to run on (default cpu)
-d,--noiseDim (default 512) dimensionality of noise vector
--K (default 1) number of iterations to optimize D for
-w, --window (default 3) windsow id of sample image
--scale (default 64) scale of images to train on
]]
if opt.gpu < 0 or opt.gpu > 3 then opt.gpu = false end
print(opt)
-- fix seed
torch.manualSeed(1)
-- threads
torch.setnumthreads(opt.threads)
print('<torch> set nb of threads to ' .. torch.getnumthreads())
if opt.gpu then
cutorch.setDevice(opt.gpu + 1)
print('<gpu> using device ' .. opt.gpu)
torch.setdefaulttensortype('torch.CudaTensor')
else
torch.setdefaulttensortype('torch.FloatTensor')
end
opt.geometry = {3, opt.scale, opt.scale}
local input_sz = opt.geometry[1] * opt.geometry[2] * opt.geometry[3]
if opt.network == '' then
----------------------------------------------------------------------
-- define D network to train
model_D = nn.Sequential()
model_D:add(cudnn.SpatialConvolution(3, 32, 5, 5, 1, 1, 2, 2))
model_D:add(cudnn.SpatialMaxPooling(2,2))
model_D:add(cudnn.ReLU(true))
model_D:add(nn.SpatialDropout(0.2))
model_D:add(cudnn.SpatialConvolution(32, 64, 5, 5, 1, 1, 2, 2))
model_D:add(cudnn.SpatialMaxPooling(2,2))
model_D:add(cudnn.ReLU(true))
model_D:add(nn.SpatialDropout(0.2))
model_D:add(cudnn.SpatialConvolution(64, 96, 5, 5, 1, 1, 2, 2))
model_D:add(cudnn.ReLU(true))
model_D:add(cudnn.SpatialMaxPooling(2,2))
model_D:add(nn.SpatialDropout(0.2))
model_D:add(nn.Reshape(8*8*96))
model_D:add(nn.Linear(8*8*96, 1024))
model_D:add(cudnn.ReLU(true))
model_D:add(nn.Dropout())
model_D:add(nn.Linear(1024,1))
model_D:add(nn.Sigmoid())
x_input = nn.Identity()()
lg = nn.Linear(opt.noiseDim, 128*8*8)(x_input)
lg = nn.Reshape(128, 8, 8)(lg)
lg = cudnn.ReLU(true)(lg)
lg = nn.SpatialUpSamplingNearest(2)(lg)
lg = cudnn.SpatialConvolution(128, 256, 5, 5, 1, 1, 2, 2)(lg)
lg = nn.SpatialBatchNormalization(256)(lg)
lg = cudnn.ReLU(true)(lg)
lg = nn.SpatialUpSamplingNearest(2)(lg)
lg = cudnn.SpatialConvolution(256, 256, 5, 5, 1, 1, 2, 2)(lg)
lg = nn.SpatialBatchNormalization(256)(lg)
lg = cudnn.ReLU(true)(lg)
lg = nn.SpatialUpSamplingNearest(2)(lg)
lg = cudnn.SpatialConvolution(256, 128, 5, 5, 1, 1, 2, 2)(lg)
lg = nn.SpatialBatchNormalization(128)(lg)
lg = cudnn.ReLU(true)(lg)
lg = cudnn.SpatialConvolution(128, 3, 3, 3, 1, 1, 1, 1)(lg)
model_G = nn.gModule({x_input}, {lg})
else
print('<trainer> reloading previously trained network: ' .. opt.network)
tmp = torch.load(opt.network)
model_D = tmp.D
model_G = tmp.G
end
-- loss function: negative log-likelihood
criterion = nn.BCECriterion()
-- retrieve parameters and gradients
parameters_D,gradParameters_D = model_D:getParameters()
parameters_G,gradParameters_G = model_G:getParameters()
-- print networks
print('Discriminator network:')
print(model_D)
print('Generator network:')
print(model_G)
local lfwHd5 = hdf5.open('datasets/lfw.hdf5', 'r')
local data = lfwHd5:read('lfw'):all()
data:mul(2):add(-1)
lfwHd5:close()
ntrain = 13000
nval = 233
trainData = data[{{1, ntrain}}]
valData = data[{{ntrain, nval+ntrain}}]
-- this matrix records the current confusion across classes
classes = {'0','1'}
confusion = optim.ConfusionMatrix(classes)
-- log results to files
trainLogger = optim.Logger(paths.concat(opt.save, 'train.log'))
testLogger = optim.Logger(paths.concat(opt.save, 'test.log'))
if opt.gpu then
print('Copy model to gpu')
model_D:cuda()
model_G:cuda()
end
-- Training parameters
sgdState_D = {
learningRate = opt.learningRate,
momentum = opt.momentum,
optimize=true,
numUpdates = 0
}
sgdState_G = {
learningRate = opt.learningRate,
momentum = opt.momentum,
optimize=true,
numUpdates=0
}
-- Get examples to plot
function getSamples(dataset, N)
local numperclass = numperclass or 10
local N = N or 8
local noise_inputs = torch.Tensor(N, opt.noiseDim)
-- Generate samples
noise_inputs:normal(0, 1)
local samples = model_G:forward(noise_inputs)
samples = nn.HardTanh():forward(samples)
local to_plot = {}
for i=1,N do
to_plot[#to_plot+1] = samples[i]:float()
end
return to_plot
end
-- training loop
while true do
local to_plot = getSamples(valData, 100)
torch.setdefaulttensortype('torch.FloatTensor')
trainLogger:style{['% mean class accuracy (train set)'] = '-'}
testLogger:style{['% mean class accuracy (test set)'] = '-'}
trainLogger:plot()
testLogger:plot()
local formatted = image.toDisplayTensor({input=to_plot, nrow=10})
formatted:float()
image.save(opt.save .."/lfw_example_v1_"..(epoch or 0)..'.png', formatted)
if opt.gpu then
torch.setdefaulttensortype('torch.CudaTensor')
else
torch.setdefaulttensortype('torch.FloatTensor')
end
-- train/test
adversarial.train(trainData)
adversarial.test(valData)
sgdState_D.momentum = math.min(sgdState_D.momentum + 0.0008, 0.7)
sgdState_D.learningRate = math.max(opt.learningRate*0.99^epoch, 0.000001)
sgdState_G.momentum = math.min(sgdState_G.momentum + 0.0008, 0.7)
sgdState_G.learningRate = math.max(opt.learningRate*0.99^epoch, 0.000001)
end