-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmnist_generate.py
68 lines (54 loc) · 1.98 KB
/
mnist_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import argparse
import torch
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('-load_path', required=True, help='Checkpoint to load path from')
args = parser.parse_args()
from models.mnist_model import Generator
# Load the checkpoint file
state_dict = torch.load(args.load_path)
# Set the device to run on: GPU or CPU.
device = torch.device("cuda:0" if(torch.cuda.is_available()) else "cpu")
# Get the 'params' dictionary from the loaded state_dict.
params = state_dict['params']
# Create the generator network.
netG = Generator().to(device)
# Load the trained generator weights.
netG.load_state_dict(state_dict['netG'])
print(netG)
c = np.linspace(-2, 2, 10).reshape(1, -1)
c = np.repeat(c, 10, 0).reshape(-1, 1)
c = torch.from_numpy(c).float().to(device)
c = c.view(-1, 1, 1, 1)
zeros = torch.zeros(100, 1, 1, 1, device=device)
# Continuous latent code.
c2 = torch.cat((c, zeros), dim=1)
c3 = torch.cat((zeros, c), dim=1)
idx = np.arange(10).repeat(10)
dis_c = torch.zeros(100, 10, 1, 1, device=device)
dis_c[torch.arange(0, 100), idx] = 1.0
# Discrete latent code.
c1 = dis_c.view(100, -1, 1, 1)
z = torch.randn(100, 62, 1, 1, device=device)
# To see variation along c2 (Horizontally) and c1 (Vertically)
noise1 = torch.cat((z, c1, c2), dim=1)
# To see variation along c3 (Horizontally) and c1 (Vertically)
noise2 = torch.cat((z, c1, c3), dim=1)
# Generate image.
with torch.no_grad():
generated_img1 = netG(noise1).detach().cpu()
# Display the generated image.
fig = plt.figure(figsize=(10, 10))
plt.axis("off")
plt.imshow(np.transpose(vutils.make_grid(generated_img1, nrow=10, padding=2, normalize=True), (1,2,0)))
plt.show()
# Generate image.
with torch.no_grad():
generated_img2 = netG(noise2).detach().cpu()
# Display the generated image.
fig = plt.figure(figsize=(10, 10))
plt.axis("off")
plt.imshow(np.transpose(vutils.make_grid(generated_img2, nrow=10, padding=2, normalize=True), (1,2,0)))
plt.show()