From 0afb6b1574cf685cb60186451778f774d6456aaa Mon Sep 17 00:00:00 2001 From: satyajandhyala Date: Thu, 25 Jan 2024 01:12:21 +0530 Subject: [PATCH] [JS/WebGPU] Added Uniforms to SkipLayerNorm. (#18788) ### Description Added Uniforms to SkipLayerNorm ### Motivation and Context Improve performance --------- Co-authored-by: Yulong Wang <7679871+fs-eire@users.noreply.github.com> --- web/lib/wasm/jsep/webgpu/op-resolve-rules.ts | 4 +- .../wasm/jsep/webgpu/ops/skip-layer-norm.ts | 123 ++++++++++-------- 2 files changed, 69 insertions(+), 58 deletions(-) diff --git a/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts b/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts index cc504093ca0d7..d737a28654220 100644 --- a/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts +++ b/web/lib/wasm/jsep/webgpu/op-resolve-rules.ts @@ -25,7 +25,7 @@ import * as pool from './ops/pool'; import {range} from './ops/range'; import {reduceL1, reduceL2, reduceLogSum, reduceLogSumExp, reduceMax, reduceMean, reduceMin, reduceProd, reduceSum, reduceSumSquare} from './ops/reduce'; import {parseResizeAttributes, resize} from './ops/resize'; -import {parseSkipLayerNormAttributes, skipLayerNorm} from './ops/skip-layer-norm'; +import {skipLayerNorm} from './ops/skip-layer-norm'; import {parseSliceAttributes, slice} from './ops/slice'; import {parseSoftmaxAttributes, softmax} from './ops/softmax'; import {parseSplitAttributes, split} from './ops/split'; @@ -116,7 +116,7 @@ export const WEBGPU_OP_RESOLVE_RULES: Map = new ['Sin', [unaryOps.sin]], ['Sinh', [unaryOps.sinh]], ['Slice', [slice, parseSliceAttributes]], - ['SkipLayerNormalization', [skipLayerNorm, parseSkipLayerNormAttributes]], + ['SkipLayerNormalization', [skipLayerNorm]], ['Split', [split, parseSplitAttributes]], ['Sqrt', [unaryOps.sqrt]], ['Softmax', [softmax, parseSoftmaxAttributes]], diff --git a/web/lib/wasm/jsep/webgpu/ops/skip-layer-norm.ts b/web/lib/wasm/jsep/webgpu/ops/skip-layer-norm.ts index a2fda9f07d09f..509a722f4b52a 100644 --- a/web/lib/wasm/jsep/webgpu/ops/skip-layer-norm.ts +++ b/web/lib/wasm/jsep/webgpu/ops/skip-layer-norm.ts @@ -4,10 +4,10 @@ import {DataType} from '../../../wasm-common'; import {TensorView} from '../../tensor-view'; import {ShapeUtil} from '../../util'; -import {AttributeWithCacheKey, createAttributeWithCacheKey} from '../attribute-with-cache-key'; -import {ComputeContext, ProgramInfo} from '../types'; +import {AttributeWithCacheKey} from '../attribute-with-cache-key'; +import {ComputeContext, ProgramInfo, ProgramUniform} from '../types'; -import {castToF32, fillVector, getMaxComponents, inputVariable, outputVariable, ShaderHelper, sumVector, tensorTypeToWsglStorageType,} from './common'; +import {castToF32, fillVector, getMaxComponents, inputVariable, outputVariable, ShaderHelper, sumVector, tensorTypeToWsglStorageType, UniformsArrayType} from './common'; export interface SkipLayerNormAttributes extends AttributeWithCacheKey { epsilon: number; @@ -86,60 +86,74 @@ const createSkipLayerNormProgramInfo = const hasInputSkipBiasSumOutput = outputCount > 3; const components = getMaxComponents(hiddenSize); - const variables = [ - inputVariable('x', inputs[0].dataType, inputs[0].dims, components), - inputVariable('skip', inputs[1].dataType, inputs[1].dims, components), - inputVariable('gamma', inputs[2].dataType, inputs[2].dims, components), - ]; - if (hasBetaInput) { - variables.push(inputVariable('beta', inputs[3].dataType, inputs[3].dims, components)); - } - if (hasBiasInput) { - variables.push(inputVariable('bias', inputs[4].dataType, inputs[4].dims, components)); - } - variables.push(outputVariable('output', inputs[0].dataType, outputShape, components)); - if (hasMeanOutput) { - variables.push(outputVariable('meanOutput', DataType.float, meanInvStdDevDim)); - } - if (hasInvStdDevOutput) { - variables.push(outputVariable('invStdOutput', DataType.float, meanInvStdDevDim)); - } - if (hasInputSkipBiasSumOutput) { - variables.push(outputVariable('inputSkipBiasSum', inputs[0].dataType, outputShape, components)); - } - const dataType = tensorTypeToWsglStorageType(inputs[0].dataType); - const getShaderSource = (shaderHelper: ShaderHelper) => ` - const hiddenSize: f32 = ${hiddenSize}; - const hiddenSizeVectorized: u32 = ${hiddenSize / components}; - const epsilon: f32 = ${attributes.epsilon}; - ${shaderHelper.declareVariables(...variables)} + const programUniforms: ProgramUniform[] = [ + {type: 'uint32', data: outputSize}, + {type: 'uint32', data: components}, + {type: 'uint32', data: hiddenSize}, + {type: 'float32', data: attributes.epsilon}, + ]; + const getShaderSource = (shaderHelper: ShaderHelper) => { + const uniformsArray: UniformsArrayType = [ + {name: 'output_size', type: 'u32'}, + {name: 'components', type: 'u32'}, + {name: 'hidden_size', type: 'u32'}, + {name: 'epsilon', type: 'f32'}, + ]; + const variables = [ + inputVariable('x', inputs[0].dataType, inputs[0].dims, components), + inputVariable('skip', inputs[1].dataType, inputs[1].dims, components), + inputVariable('gamma', inputs[2].dataType, inputs[2].dims, components), + ]; + if (hasBetaInput) { + variables.push(inputVariable('beta', inputs[3].dataType, inputs[3].dims, components)); + } + if (hasBiasInput) { + variables.push(inputVariable('bias', inputs[4].dataType, inputs[4].dims, components)); + } + variables.push(outputVariable('output', inputs[0].dataType, outputShape, components)); + if (hasMeanOutput) { + variables.push(outputVariable('mean_output', DataType.float, meanInvStdDevDim)); + } + if (hasInvStdDevOutput) { + variables.push(outputVariable('inv_std_output', DataType.float, meanInvStdDevDim)); + } + if (hasInputSkipBiasSumOutput) { + variables.push(outputVariable('input_skip_bias_sum', inputs[0].dataType, outputShape, components)); + } + const dataType = tensorTypeToWsglStorageType(inputs[0].dataType); + return ` + + ${shaderHelper.registerUniforms(uniformsArray).declareVariables(...variables)} ${shaderHelper.mainStart()} - ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes(outputSize / hiddenSize)} - let offset = global_idx * hiddenSizeVectorized; + ${shaderHelper.guardAgainstOutOfBoundsWorkgroupSizes('uniforms.output_size / uniforms.hidden_size')} + let hidden_size_vectorized: u32 = uniforms.hidden_size / uniforms.components; + let offset = global_idx * hidden_size_vectorized; var sum = ${fillVector('f32', components)}; var squareSum = ${fillVector('f32', components)}; - for (var i: u32 = 0; i < hiddenSizeVectorized; i++) { - let skipValue = skip[offset + i]; - let biasValue = ${hasBiasInput ? 'bias[i]' : '0.0'}; - let inputValue = x[offset + i]; - let value = inputValue + skipValue + biasValue; - ${hasInputSkipBiasSumOutput ? 'inputSkipBiasSum[offset + i] = value;' : ''} + for (var i: u32 = 0; i < hidden_size_vectorized; i++) { + let skip_value = skip[offset + i]; + let bias_value = ${hasBiasInput ? 'bias[i]' : '0.0'}; + let input_value = x[offset + i]; + let value = input_value + skip_value + bias_value; + ${hasInputSkipBiasSumOutput ? 'input_skip_bias_sum[offset + i] = value;' : ''} output[offset + i] = value; - let f32Value = ${castToF32(dataType, components, 'value')}; - sum += f32Value; - squareSum += f32Value * f32Value; + let f32_value = ${castToF32(dataType, components, 'value')}; + sum += f32_value; + squareSum += f32_value * f32_value; } - let mean = ${sumVector('sum', components)} / hiddenSize; - let invStdDev = inverseSqrt(${sumVector('squareSum', components)} / hiddenSize - mean * mean + epsilon); - ${hasMeanOutput ? 'meanOutput[global_idx] = mean;' : ''} - ${hasInvStdDevOutput ? 'invStdOutput[global_idx] = invStdDev;' : ''} - for (var i: u32 = 0; i < hiddenSizeVectorized; i++) { - output[offset + i] = (output[offset + i] - ${dataType}(mean)) * ${dataType}(invStdDev) * gamma[i] - + ${hasBetaInput ? 'beta[i]' : '0.0'}; + let mean = ${sumVector('sum', components)} / f32(uniforms.hidden_size); + let inv_std_dev = inverseSqrt(${ + sumVector('squareSum', components)} / f32(uniforms.hidden_size) - mean * mean + uniforms.epsilon); + ${hasMeanOutput ? 'mean_output[global_idx] = mean;' : ''} + ${hasInvStdDevOutput ? 'inv_std_output[global_idx] = inv_std_dev;' : ''} + for (var i: u32 = 0; i < hidden_size_vectorized; i++) { + output[offset + i] = (output[offset + i] - ${dataType}(mean)) * ${dataType}(inv_std_dev) * gamma[i] + ${ + hasBetaInput ? 'beta[i]' : '0.0'}; } }`; + }; const outputs = [{dims: outputShape, dataType: inputs[0].dataType}]; if (outputCount > 1) { outputs.push({dims: meanInvStdDevDim, dataType: DataType.float}); @@ -150,12 +164,14 @@ const createSkipLayerNormProgramInfo = if (outputCount > 3) { outputs.push({dims: inputShape, dataType: inputs[0].dataType}); } - return { name: 'SkipLayerNormalization', - shaderCache: {hint: attributes.cacheKey}, + shaderCache: { + hint: `${components};${hasMeanOutput};${hasInvStdDevOutput};${hasInputSkipBiasSumOutput}`, + inputDependencies: inputs.map((_input, _index) => 'type') + }, getShaderSource, - getRunData: () => ({outputs, dispatchGroup: {x: Math.ceil(outputSize / hiddenSize / 64)}}), + getRunData: () => ({outputs, dispatchGroup: {x: Math.ceil(outputSize / hiddenSize / 64)}, programUniforms}), }; }; @@ -178,8 +194,3 @@ export const skipLayerNorm = (context: ComputeContext, attributes: SkipLayerNorm context.compute( createSkipLayerNormProgramInfo(context.inputs, attributes, context.outputCount, isTraining), {outputs}); }; - -export const parseSkipLayerNormAttributes = (attributes: Record): SkipLayerNormAttributes => { - const epsilon = attributes.epsilon as number; - return createAttributeWithCacheKey({epsilon}); -};