Skip to content

Latest commit

 

History

History
31 lines (23 loc) · 1.09 KB

README.md

File metadata and controls

31 lines (23 loc) · 1.09 KB

Face and Landmark Detection

Pretrained Models

All models are trained on WiderFace dataset and weights are from official repositories.

WiderFace Benchmark

Method Model Easy Medium Hard Params(M) GFLOPs
RetinaFace MobileNet0.25 87.78 81.16 47.32 0.44 0.8
R50 94.92 91.90 64.17 30 38
SCRFD 0.5GF 90.57 88.12 68.51 0.57 0.5
2.5GF 93.78 92.16 77.87 0.67 2.5
10GF 95.16 93.87 83.05 4 10
34GF 96.06 94.92 85.29 10 34
YOLO5Face YOLOv5n-0.5 (ShuffleNetv2) 90.76 88.12 73.82 0.45 0.6
YOLOv5n (ShuffleNetv2) 93.61 91.52 80.53 1.73 2.1
YOLOv5s 94.33 92.61 83.15 7 6
YOLOv5m 95.30 93.76 85.28 21 18

WiderFace Dataset Preparation

  • 32,303 images
  • 393,703 faces
  • Contains large variations in scale, pose, expression, occlusion and illumination
  • 40% training 10% validation, 50% testing
  • 61 scene categories