-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathEmbedCoordToImageSpace.m
183 lines (150 loc) · 5.31 KB
/
EmbedCoordToImageSpace.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function [I,BW] = EmbedCoordToImageSpace(x,y,Param)
% This function takes shape coordinates and embeds them into image space
% using a selected noise generation function.
% Obtain parameters
ImSize = Param.ImSize;
RotationAngle = Param.RotationAngle;
ScalingRatio = Param.ScalingRatio;
Persistence = Param.Persistence;
Method = Param.Method;
Motion = Param.Motion;
NbrFrames = Param.NbrFrames;
% Obtain center coordinates
[xg,yg] = meshgrid(1:ImSize,1:ImSize);
ImCenter = mean(1:ImSize);
% Perform initial rotation
rot_matrix = [cosd(RotationAngle), -sind(RotationAngle); sind(RotationAngle), cosd(RotationAngle)];
rot = rot_matrix * [x,y]';
x = reshape( rot(1,:) , [] , 1); y = reshape( rot(2,:) , [] , 1);
% Perform spline interpolation with scaling
interp_pts = fnplt(cscvn([x,y]'));
x_interp = interp_pts(1,:)';
y_interp = interp_pts(2,:)';
Max_Width = max(abs( [ max(x_interp) , min(x_interp) , ...
max(y_interp) , min(y_interp) ] ));
x_interp = x_interp / Max_Width * ScalingRatio * ImSize / 2;
y_interp = y_interp / Max_Width * ScalingRatio * ImSize / 2;
% Cast into pixel space (binary image == GROUND TRUTH)
BW = roipoly( zeros(ImSize) , x_interp + ImCenter , y_interp + ImCenter );
% Methods of generating cell texture
switch lower(Method)
case 'perlin'
% Method #1: Use Perlin noise to generate cell texture
H = fspecial('disk',3);
P_N = perlin_noise(BW,Persistence);
case 'fractal'
% Method #2: Use Fractal noise to generate cell texture
H = fspecial('disk',3);
P_N = fractal_noise(BW,Persistence);
end
P_N = P_N - min(P_N(:)); P_N = P_N / max(P_N(:));
I = conv2( im2double(BW) , H , 'same' ) + (BW .* P_N);
% Stop here if only 1 frame is to be generated
if NbrFrames == 1, return; end;
% Create motion variables
K = double(BW); % analog for mask
L = P_N; % analog for noise
I_temp = zeros(ImSize,ImSize,NbrFrames);
BW_temp = zeros(ImSize,ImSize,NbrFrames);
% Generate motion by warping
switch lower(Motion)
case 'asympotic'
a = @(f) 1e-2 * exp(-f^1.3);
case 'shrink-expand'
turning_point = 0.25 + rand*0.1 + randn*0.1;
a = @(f) ((NbrFrames-f)/NbrFrames - turning_point) * 9e-6 ;
case 'expand-shrink'
turning_point = 0.25 + rand*0.1 + randn*0.1;
a = @(f) -((NbrFrames-f)/NbrFrames - turning_point) * 9e-6 ;
end
% Generate translation coordinates
trans_sigma = 2;
trans_start = trans_sigma*randn(2,1);
trans_end = diag(-sign(trans_start)) * abs(trans_sigma*randn(2,1));
trans_grad = trans_end - trans_start;
for f = 1:NbrFrames
% Apply distortion
K = barrel_distortion(K,a(f));
K_mask = round(K); %ceil(K-0.5);
L = barrel_distortion(L,a(f));
%J = barrel_distortion(J,a(f)); % Looks more natural (but is not GT)
%J = conv2( im2double(K_mask) , H , 'same' ) + (K_mask .* P_N);
J = conv2( im2double(K_mask) , H , 'same' ) + (K_mask .* L); % Looks more natural
%I_temp(:,:,f) = J;
%BW_temp(:,:,f) = K_mask;
% Apply translation
t = exp(-f/(NbrFrames/2));
tx = trans_start(1) + t*( trans_end(1)-trans_start(1) );
ty = trans_start(2) + t*( trans_end(2)-trans_start(2) );
I_temp(:,:,f) = imtranslate(J,[tx,ty]);
BW_temp(:,:,f) = ceil(imtranslate(K_mask,[tx,ty]));
end
I = I_temp; BW = BW_temp;
% Show spectral plots
% [static_spectrum,static_freq] = RadialAvgPSD(P_N);
% hold on; plot(10*log10(static_freq),10*log10(static_spectrum),'b');
% Show image
% clf; imagesc(I); axis square; colormap gray;
% hold on; plot(x_interp+ImCenter,y_interp+ImCenter,'b-');
end
%% Barrel Distortion
% Reference: http://www.mathworks.com/help/images/examples/creating-a-gallery-of-transformed-images.html
function I_barrel = barrel_distortion(I,a)
% The variable 'a' controls how much barrel/pin cushion distortion there
% is. If a>0 then the image appears to shrink. If a<0 then the image
% appears to expand.
[nrows,ncols] = size(I);
[xi,yi] = meshgrid(1:ncols,1:nrows);
imid = round(size(I,2)/2);
xt = xi(:) - imid;
yt = yi(:) - imid;
[theta,r] = cart2pol(xt,yt);
s = r + a*r.^3;
[ut,vt] = pol2cart(theta,s);
u = reshape(ut,size(xi)) + imid;
v = reshape(vt,size(yi)) + imid;
tmap_B = cat(3,u,v);
resamp = makeresampler('linear','fill');
I_barrel = tformarray(I,[],resamp,[2 1],[1 2],[],tmap_B,0);
end
%% Perlin noise
% This function was modified to include persistence
% The original function was taken from:
% http://stackoverflow.com/questions/7347111/generate-procedural-perlin-noise-in-matlab
function im = perlin_noise(im,persistence)
if nargin == 1
persistence = 0;
end
[n, m] = size(im);
i = 0;
w = sqrt(n*m);
while w > 3
i = i + 1;
d = interp2(randn(n, m), i-1, 'spline');
if persistence == 0
im = im + i * d(1:n, 1:m);
else
im = im + persistence^i * d(1:n, 1:m);
end
w = w - ceil(w/2 - 1);
end
end
%% Fractal Noise (to be precise, 1/f^p noise)
% A nice (visual) explanation can be found at http://paulbourke.net/fractals/noise/
function im = fractal_noise(im,persistence)
% If persistence wasn't defined, then pink noise (i.e. 1/f) is default
if nargin == 1
persistence = 1;
end
% Extract size information
[N(1),N(2)] = size(im);
hr = (N(1)-1)/2;
hc = (N(2)-1)/2;
% Distance from center (normalized to 0:1)
[x,y] = meshgrid( [-hc:hc]/hc , [-hr:hr]/hr );
D = sqrt( x.^2 + y.^2 );
% Create a 1/f^p filter
H = 1 ./ D.^persistence; % filter
H = H / norm(H(:)); % normalize
im = real( ifft2( ifftshift( fft2(randn(N)) .* H )) );
end