diff --git a/project/data_analysis/python/paper_plots/B_modes/EB_summary.py b/project/data_analysis/python/paper_plots/B_modes/EB_summary.py index 5a66fabb..0f692b87 100644 --- a/project/data_analysis/python/paper_plots/B_modes/EB_summary.py +++ b/project/data_analysis/python/paper_plots/B_modes/EB_summary.py @@ -113,8 +113,6 @@ plt.clf() plt.close() - - beta_ACT = angle["optimal", "post_unblinding"]["beta_ACT", "mean"] print(beta_ACT) @@ -192,72 +190,3 @@ plt.ylim(-4,6) plt.show() - - -for spec in ["EB", "TB"]: - - lb_90x90, ps_90x90, error_90x90 = np.loadtxt(f"combined_spectra_paper_optimal/Dl_90x90_{spec}.dat", unpack=True) - lb_150x150, ps_150x150, error_150x150 = np.loadtxt(f"combined_spectra_paper_optimal/Dl_150x150_{spec}.dat", unpack=True) - lb_90x150, ps_90x150, error_90x150 = np.loadtxt(f"combined_spectra_paper_optimal/Dl_90x150_{spec}.dat", unpack=True) - - id = np.where(lb_150x150>= lb_90x90[0]) - lb_150x150, ps_150x150, error_150x150 = lb_150x150[id], ps_150x150[id], error_150x150[id] - - diff_data_150x150_90x90 = ps_150x150 - ps_90x90 - diff_data_150x150_90x150 = ps_150x150 - ps_90x150 - - diff_150x150_90x90_list = [] - diff_150x150_90x150_list = [] - - for iii in range(399): - lb_90x90, ps_sim_90x90, error_sim_90x90 = np.loadtxt(f"combined_sim_spectra_optimal/Dl_90x90_{spec}_{iii:05d}.dat", unpack=True) - lb_90x150, ps_sim_90x150, error_sim_90x150 = np.loadtxt(f"combined_sim_spectra_optimal/Dl_90x150_{spec}_{iii:05d}.dat", unpack=True) - lb_150x150, ps_sim_150x150, error_sim_150x150 = np.loadtxt(f"combined_sim_spectra_optimal/Dl_150x150_{spec}_{iii:05d}.dat", unpack=True) - id = np.where(lb_150x150>= lb_90x90[0]) - - lb_150x150, ps_sim_150x150, error_sim_150x150 = lb_150x150[id], ps_sim_150x150[id], error_sim_150x150[id] - - diff_150x150_90x90_list += [ps_sim_150x150 - ps_sim_90x90] - diff_150x150_90x150_list += [ps_sim_150x150 - ps_sim_90x150] - - error_mc_150x150_90x90 = np.std(diff_150x150_90x90_list, axis=0) - error_mc_150x150_90x150 = np.std(diff_150x150_90x150_list, axis=0) - - cov_mc_150x150_90x90 = np.cov(diff_150x150_90x90_list, rowvar=False) - cov_mc_150x150_90x150 = np.cov(diff_150x150_90x150_list, rowvar=False) - - - corr_mc_150x150_90x90 = so_cov.cov2corr(cov_mc_150x150_90x90, remove_diag=True) - corr_mc_150x150_90x150 = so_cov.cov2corr(cov_mc_150x150_90x150, remove_diag=True) - - plt.imshow(corr_mc_150x150_90x90) - plt.colorbar() - plt.show() - - plt.imshow(corr_mc_150x150_90x150) - plt.colorbar() - plt.show() - - - chi2_150x150_90x90 = np.sum((diff_data_150x150_90x90) ** 2 / error_mc_150x150_90x90 ** 2) - chi2_150x150_90x150 = np.sum((diff_data_150x150_90x150) ** 2 / error_mc_150x150_90x150 ** 2) - - pte_150x150_90x90 = 1 - ss.chi2(len(lb_150x150)).cdf(chi2_150x150_90x90) - pte_150x150_90x150 = 1 - ss.chi2(len(lb_150x150)).cdf(chi2_150x150_90x150) - - plt.figure(figsize=(16,6)) - plt.title("Frequency null", fontsize=24) - plt.errorbar(lb_150x150-10, diff_data_150x150_90x90, error_mc_150x150_90x90, fmt="o", label=f"pte 150x150 - 90x90: {pte_150x150_90x90*100:.2f} %") - plt.errorbar(lb_150x150+10, diff_data_150x150_90x150, error_mc_150x150_90x150, fmt="o", label=f"pte 150x150 - 90x150: {pte_150x150_90x150*100:.2f} %") - plt.plot(lb_150x150, lb_150x150*0) - if spec == "EB": - plt.ylim(-2,2) - if spec == "TB": - plt.ylim(-5,5) - plt.xlabel(r"$\ell$", fontsize=25) - plt.ylabel(r"$D^{%s}_{\ell}$" % spec, fontsize=25) - - plt.legend(fontsize=16) - plt.savefig(f"freq_null_{spec}.png") - plt.clf() - plt.close()