From 933c79427df94be1c68d43fb1b348e1f4397ad4d Mon Sep 17 00:00:00 2001 From: Louis Thibaut Date: Mon, 2 Dec 2024 16:55:16 +0100 Subject: [PATCH] add script to plot residuals with respect to the best fit model --- project/data_analysis/dr6.rst | 1 + .../paper_plots/results_plot_residuals.py | 171 ++++++++++++++++++ 2 files changed, 172 insertions(+) create mode 100644 project/data_analysis/python/paper_plots/results_plot_residuals.py diff --git a/project/data_analysis/dr6.rst b/project/data_analysis/dr6.rst index c58e906e..a42e4179 100644 --- a/project/data_analysis/dr6.rst +++ b/project/data_analysis/dr6.rst @@ -248,3 +248,4 @@ In order to do plots for the paper it is useful to apply them to the spectra (an OMP_NUM_THREADS=256 srun -n 1 -c 256 --cpu-bind=cores python results_plot_TT.py post_likelihood.dict OMP_NUM_THREADS=256 srun -n 1 -c 256 --cpu-bind=cores python results_plot_combined_spectra.py post_likelihood.dict OMP_NUM_THREADS=256 srun -n 1 -c 256 --cpu-bind=cores python results_plot_with_planck.py post_likelihood.dict + OMP_NUM_THREADS=256 srun -n 1 -c 256 --cpu-bind=cores python results_plot_residuals.py post_likelihood.dict diff --git a/project/data_analysis/python/paper_plots/results_plot_residuals.py b/project/data_analysis/python/paper_plots/results_plot_residuals.py new file mode 100644 index 00000000..9fdda7d7 --- /dev/null +++ b/project/data_analysis/python/paper_plots/results_plot_residuals.py @@ -0,0 +1,171 @@ +""" +This script plot the residuals with respect to the LCDM model specified in the dictionnary file +""" + +from pspy import so_dict, so_spectra, pspy_utils +from pspipe_utils import log, best_fits, external_data, covariance +import numpy as np +import pylab as plt +import sys, os +from matplotlib import rcParams +import pspipe_utils +import scipy.stats as ss + +rcParams["font.family"] = "serif" +rcParams["font.size"] = "12" +rcParams["xtick.labelsize"] = 12 +rcParams["ytick.labelsize"] = 12 +rcParams["axes.labelsize"] = 12 +rcParams["axes.titlesize"] = 12 + +d = so_dict.so_dict() +d.read_from_file(sys.argv[1]) +log = log.get_logger(**d) + +tag = d["best_fit_tag"] +binning_file = d["binning_file"] +lmax = d["lmax"] + +combined_spec_dir = f"combined_spectra{tag}" +bestfit_dir = f"best_fits{tag}" + +run_name = {} +run_name["_paper"] = "ACT" +run_name["_paper_PACT"] = "PACT" +run_name["_Planck"] = "Planck" +run_name["_Planck_LB"] = "Planck LB" + +plot_dir = f"plots/combined_spectra{tag}/" +pspy_utils.create_directory(plot_dir) + +type = d["type"] + +planck_data_path = os.path.join(os.path.dirname(os.path.abspath(pspipe_utils.__file__)), "data/spectra/planck") + +######################################################################################## +selected_spectra_list = [["TT"], ["EE"], ["TE", "ET"]] +######################################################################################## + +ylim = {} +ylim["TT"] = [10, 7000] +ylim["TE"] = [-105000, 75000] +ylim["EE"] = [0, 45] + +ylim_res = {} +ylim_res["TT"] = [-120000, 120000] +ylim_res["TE"] = [-15000, 15000] +ylim_res["EE"] = [-4, 4] + +fac = {} +fac["TT"] = 0 +fac["TE"] = 1 +fac["EE"] = 0 +res_fac = {} +res_fac["TT"] = 1 +res_fac["TE"] = 1 +res_fac["EE"] = 0 + +y_ticks_res = {} +y_ticks_res["TT"] = [-100000, -50000, 0 , 50000, 100000] +y_ticks_res["EE"] = [-3, -2, -1, 0, 1, 2, 3] +y_ticks_res["TE"] = [-10000, -5000, 0, 5000, 10000] + + +spectra = ["TT", "TE", "TB", "ET", "BT", "EE", "EB", "BE", "BB"] + +lth, Dlth = so_spectra.read_ps(f"{bestfit_dir}/cmb.dat", spectra=spectra) +Dlb_th,Dlb_th_large = {}, {} +for spectrum in spectra: + lb_th, Dlb_th[spectrum] = pspy_utils.naive_binning(lth, Dlth[spectrum], binning_file, lmax) + lb_th_large, Dlb_th_large[spectrum] = pspy_utils.naive_binning(lth, Dlth[spectrum], "../dr6/BIN_ACTPOL_50_4_SC_large_bin_at_low_ell", lmax) + + +l_planck, ps_planck_b, sigma_planck, cov_planck = external_data.get_planck_cmb_only_data() +l_b, ps_th_plank = external_data.bin_ala_planck_cmb_only(lth, Dlth) + +rebin_fac = 2 + +for spec_select in selected_spectra_list: + s_name = spec_select[0] + + lb_ml, vec_ml, sigma_ml = np.loadtxt(f"{combined_spec_dir}/{type}_all_{s_name}_cmb_only.dat", unpack=True) + cov_ml = np.load(f"{combined_spec_dir}/cov_all_{s_name}.npy") + inv_cov_ml = np.linalg.inv(cov_ml) + + l_p = l_planck[s_name] + f_p = l_p * (l_p + 1) / (2 * np.pi) + Dl_p = ps_planck_b[s_name] * f_p + sigma_p = sigma_planck[s_name] * f_p + cov_p = cov_planck[s_name+s_name] * np.outer(f_p, f_p) + Dl_p_th = ps_th_plank[s_name] * f_p + + l_p_rebin, Dl_p_rebin, cov_rebin = covariance.rebin_spectrum_with_cov(l_p, Dl_p, cov_p, rebin_fac=rebin_fac) + _, Dl_p_th_rebin, _ = covariance.rebin_spectrum_with_cov(l_p, Dl_p_th, cov_p, rebin_fac=rebin_fac) + + + id = np.where(lb_th >= lb_ml[0]) + res = (vec_ml - Dlb_th[s_name][id]) + chi2 = res @ inv_cov_ml @ res + ndof = len(lb_ml) + pte = 1 - ss.chi2(ndof).cdf(chi2) + + + res_p = (Dl_p - Dl_p_th) + chi_2_p = res_p @ np.linalg.inv(cov_p) @ res_p + ndof_p = len(Dl_p) + pte_p = 1 - ss.chi2(ndof_p).cdf(chi_2_p) + + res_p_rebin = (Dl_p_rebin - Dl_p_th_rebin) + chi_2_p_rebin = res_p_rebin @ np.linalg.inv(cov_rebin) @ res_p_rebin + ndof_p_rebin = len(Dl_p_rebin) + pte_p_rebin = 1 - ss.chi2(ndof_p_rebin).cdf(chi_2_p_rebin) + sigma_p_rebin = np.sqrt(cov_rebin.diagonal()) + + + print(pte, pte_p, pte_p_rebin) + + plt.figure(figsize=(16, 8)) + plt.subplot(2,1,1) + if s_name == "TT": plt.semilogy() + plt.ylim(ylim[s_name]) + plt.errorbar(lb_ml, vec_ml * lb_ml ** fac[s_name], sigma_ml * lb_ml ** fac[s_name] , fmt=".", color="royalblue", label="ACT") + plt.errorbar(l_p_rebin, Dl_p_rebin * l_p_rebin ** fac[s_name], sigma_p_rebin * l_p_rebin ** fac[s_name], fmt=".", color="darkorange", alpha=0.6, label="Planck") + plt.plot(lth, Dlth[s_name] * lth ** fac[s_name], color="gray", alpha=1, label=r" %s $\Lambda$CDM" % run_name[tag]) + + if fac[s_name] == 0: + plt.ylabel(r"$D^{%s}_{\ell}$" % s_name, fontsize=22) + if fac[s_name] == 1: + plt.ylabel(r"$\ell D^{%s}_{\ell}$" % s_name, fontsize=22) + if fac[s_name] > 1: + plt.ylabel(r"$\ell^{%s}D^{%s}_{\ell}$" % (fac[s_name], s_name), fontsize=22) + + plt.xlim(0,4000) + plt.legend(fontsize=16) + plt.xticks([]) + + plt.subplot(2,1,2) + plt.xlabel(r"$\ell$", fontsize=22) + + if res_fac[s_name] == 0: + plt.ylabel(r"$(D^{%s}_{\ell} - D^{%s, th}_{\ell, \rm %s}) $" % ( s_name, s_name, run_name[tag]), fontsize=22) + if res_fac[s_name] == 1: + plt.ylabel(r"$\ell (D^{%s}_{\ell} - D^{%s, th}_{\ell, \rm %s}) $" % (s_name, s_name, run_name[tag]), fontsize=22) + if res_fac[s_name] > 1: + plt.ylabel(r"$\ell^{%s} (D^{%s}_{\ell} - D^{%s, th}_{\ell, \rm %s}) $" % (res_fac[s_name], s_name, s_name, run_name[tag]), fontsize=22) + + + plt.errorbar(lb_ml, res * lb_ml ** res_fac[s_name], sigma_ml * lb_ml ** res_fac[s_name], + label=f"ACT (PTE: {pte:.3f})", fmt=".", color="royalblue") + plt.errorbar(l_p_rebin, res_p_rebin * l_p_rebin ** res_fac[s_name], sigma_p_rebin * l_p_rebin ** res_fac[s_name], + label=f"Planck (PTE: {pte_p_rebin:.3f})", alpha=0.6, fmt=".", color="darkorange") + + plt.plot(lb_th, lb_th * 0, color="gray") + plt.xlim(0,4000) + plt.ylim(ylim_res[s_name]) + plt.yticks(ticks=y_ticks_res[s_name], labels=y_ticks_res[s_name]) + plt.legend(fontsize=16) + plt.subplots_adjust(wspace=0, hspace=0) + plt.savefig(f"{plot_dir}/residal_vs_best_fit_cmb_{s_name}.png", bbox_inches="tight") + plt.clf() + plt.close() +