-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAcquTest.py
executable file
·333 lines (289 loc) · 12.9 KB
/
AcquTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/python
import numpy as np
import Acqu as aq
#import A2G4
#import AcquDetector as aqdet
#import CrystalBall as cb
import argparse
import time
#import Timepix
#import igraph as ig
#import cairo
#import plotly.plotly as py
#import plotly.graph_objs as go
import ROOT
from rootpy.plotting import histogram, Hist2D,Hist, Canvas
#canvas = Canvas()
adchist = Hist(10000,0,10000,name='adcs')
adchist2d = Hist2D(500,0,500,68000,0,68000,name='adcvalues')
taggerchan = Hist(366,0,366)
#taggertime = Hist(10240,0,10240)
tpxXY1 = Hist2D(256,0,256,256,0,256)
#tpxXY2 = Hist2D(256,0,256,256,0,256)
tpxTime = Hist(10000,0,1)
#tpxtimeDiff = Hist(2000,-1000,1000)
#tpxtimeDiff2 = Hist2D(2000,-1000,1000,200,0,40000000)
#adccompare = Hist2D(1000,0,10000,1000,0,10000)
#adcevent = Hist2D(10000,0,10000,7000,11000,18000)
#adcevent2 = Hist2D(10000,0,10000,1000,0,65536)
#taggtpxDiff = Hist(20000,-4E8,4E8)
#taggtpxDiff = Hist(10000000,-1E8,1E8)
#taggtpxDiff2 = Hist2D(1000,-4E8,4E8,1000,0,5E8)
#taggtpxComp2 = Hist2D(1000,-4E8,4E8,1000,0,5E8)
#taggtpxDiff2 = Hist2D(100000,-3E8,4E8,200,0,3E8)
#taggtpxComp2 = Hist2D(10000,-4E5,4E5,1000,0,5E8)
taggerchantime = Hist2D(2000,-1000,1000,366,0,366,name="taggerchantime")
cbchanenergy = Hist2D(100,0,1200,720,0,720,name="cbchanenergy")
cbchantime = Hist2D(2000,-1000,1000,720,0,720,name="cbchantime")
tapschanenergy = Hist2D(100,0,1200,384,0,384,name="tapschanenergy")
tapschantime = Hist2D(2000,-1000,1000,384,0,384,name="tapschantime")
def main():
global adchist
parser = argparse.ArgumentParser()
parser.add_argument("fileName", help="AcquDAQ data file") #Add args and opts
args = parser.parse_args() #parse them
flist = [args.fileName] #make a list of all files to be processed, somehow
outFile = ROOT.TFile('/scratch/test.root','recreate')
#do init stuff in here
#...
for file in flist: #for each file in the list
start = time.time()
aq.openFile(file)
print aq.fileInfo
#print aq.fileTrailer
#aqdet.LoadDetectors(['aux/CrystalBallEnergy.json','aux/CrystalBallTime.json'])
#aqdet.LoadDetectors(['aux/CrystalBallEnergy.json','aux/TAPSEnergy.json'])
#aqdet.LoadDetectors(['aux/CrystalBallEnergyNew.json'])#,'/home/simong/AcquPy/aux/tagger.json'])#,'aux/TAPSEnergy.json'])
#aqdet.LoadDetectors(['/home/simong/AcquPy/aux/tagger.json','/home/simong/AcquPy/aux/CrystalBallEnergy.json','/home/simong/AcquPy/aux/TAPSEnergy.json'])
#aqdet.LoadDetectors(['/home/simong/AcquPy/aux/tagger.json','/home/simong/AcquPy/aux/CrystalBallEnergy.json','/home/simong/AcquPy/aux/CrystalBallTime.json','/home/simong/AcquPy/aux/TAPSEnergy.json','/home/simong/AcquPy/aux/TAPSTime.json'])
#aqdet.LoadDetectors(['/home/simong/AcquPy/aux/taggerNew.json','/home/simong/AcquPy/aux/clock.json'])
middle = time.time()
print('Open file: ',middle-start)
#aq.runFunction(fillTP3,0,20000)
aq.runFunction(fillADCHist,0,100000)
print aq.eventNo
#aq.runEPICSFunction(printEpics)
#aq.listEpicsPVs()
#aq.runEPICSFunction(getEpics)
#aq.runEPICSFunction(dumpTimepix)
#aq.runFunction(fillTagger,0,10)
#aq.runFunction(fillTagger)
end = time.time()
print('Process: ',end-middle)
#aq.runFunction(ADCEventTrend,100000)
#aq.runFunction(taggerTimepix,0,6000)
#####A2G4.openFile("/w/work1/home/simong/Simulation/G4Out/GP_GP_20982.root")
#tapschantime.Write()
#tapschanenergy.Write()
#cbchantime.Write()
#cbchanenergy.Write()
#taggerchantime.Write()
#taggerchan.Write()
#adccompare.Write()
adchist.Write()
adchist2d.Write()
#tpxtimeDiff2.Write()
#tpxtimeDiff.Write()
#tpxXY1.Write()
#tpxTime.Write()
#tpxXY2.Write()
#adcevent.Write()
#adcevent2.Write()
#taggtpxDiff.Write()
#taggtpxDiff2.Write()
#taggtpxComp2.Write()
def fillTagger():
np.set_printoptions(threshold=np.nan)
aqdet.Calibrate(aq.adcArray)
graph = aqdet.GetGraph('CB',['Energy','Time'])
print graph.vs['Energy']
#print graph.vs['Time']
#CBgraph = aqdet.detgraphs['CB'].subgraph(data['CB']['channel'])
#print graph
#cb.Build_Clusters(graph)
#channellist = data['CB']['channel'].tolist()
#valuelist = [int(x) for x in data['CB']['value']]
#subgraph = aqdet.detgraphs['CB'].subgraph(channellist)
#print('CB')
#print(data['CB'].community_optimal_modularity())
#print(data['CB'].clusters())
#valuelist = [int(x) for x in data['CB'].vs['value']]
#valuelist = list(range(data['CB'].vcount()))
#data['CB'].vs['label'] = valuelist
#ig.plot(CBgraph,keep_aspect_ratio=True,bbox=(0,0,1200,1200),layout=CBgraph.vs['coordinates'])
#ig.plot(data['CB'],keep_aspect_ratio=True,bbox=(0,0,1200,1200),layout=data['CB'].vs['coordinates'])
#ig.plot(data['CB'],keep_aspect_ratio=True,bbox=(0,0,600,600),layout=data['CB'].vs['coordinates'])
#if(data['TAPS'].vcount()):
# print('TAPS')
# print(data['TAPS'].vs['coordinates'])
# valuelist = [int(x) for x in data['TAPS'].vs['value']]
# data['TAPS'].vs['label'] = valuelist
#ig.plot(data['TAPS'],keep_aspect_ratio=True,rescale=False,layout=data['TAPS'].vs['coordinates'])
#cb.Build_Clusters(data['CB'])
#print(data)
#print(aqdet.frame)
#print channelArray
#if len(channelArray):
#print(data['CB'][['channel','offset','scale','raw','value']])
#print(data['tagger'][['channel','value']].view(np.float).reshape(-1,2))
#taggerchan.fill_array(data['tagger'][['channel']])
#taggerchantime.fill_array(data['tagger'][['value','channel']].view(np.float).reshape(-1,2))
####cbchanenergy.fill_array(data['CB'][['value','channel']].view(np.float).reshape(-1,2))
#cbchantime.fill_array(data['CBTime'][['value','channel']].view(np.float).reshape(-1,2))
#tapschanenergy.fill_array(data['TAPS'][['value','channel']].view(np.float).reshape(-1,2))
#tapschantime.fill_array(data['TAPSTime'][['value','channel']].view(np.float).reshape(-1,2))
#print(len(data['CBTime']),len(data['CB']))
#print(len(data['TAPSTime']),len(data['TAPS']))
#print(' ')
#print
# taggerchantime.fill(channelArrayaqdet.TaggerChannels(aq.adcArray))
if(aq.eventNo%1000==0):
print('number',aq.eventNo)
def findEpics():
if(len(aq.epicsBuffers)):
print(aq.epicsBuffers)
def printEpics():
aq.dumpEpicsBuffer()
def getEpics():
print('chan 0')
print(aq.getEpicsPV(0))
print('chan 1')
print(aq.getEpicsPV('TAGG:MagneticField'))
print('chan 2')
print(aq.getEpicsPV(2))
print('chan 3')
print(aq.getEpicsPV(3))
print('chan 4')
print(aq.getEpicsPV(4))
def dumpTimepix():
# Create timepix time array
nHitsA = aq.getEpicsPV('PPOL:TIMEPIXA:NHITS')
encodedA = aq.getEpicsPV('PPOL:TIMEPIXA:ENCODED')
TimepixAData = aqdet.TimepixDecode(nHitsA,encodedA)
nHitsB = aq.getEpicsPV('PPOL:TIMEPIXB:NHITS')
encodedB = aq.getEpicsPV('PPOL:TIMEPIXB:ENCODED')
TimepixBData = aqdet.TimepixDecode(nHitsB,encodedB)
nsTimeA = 25*TimepixAData[['ToA']].astype(float) - 25/16*TimepixAData[['FToA']].astype(float)
nsTimeB = 25*TimepixBData[['ToA']].astype(float) - 25/16*TimepixBData[['FToA']].astype(float)
#print TimepixAData[['y','x']].tolist()
for i, data in enumerate(TimepixAData):
timeDataqdetD = np.full((len(nsTimeB),2),nsTimeA[i])
timeDataqdetD[:,0] = nsTimeB-nsTimeA[i]
timeData = nsTimeB-nsTimeA[i]
#print timeDataqdetD
tpxtimeDiff.fill_array(timeDataqdetD[:,0])
#tpxtimeDiff.fill_array(nsTimeB-nsTimeA[i])
tpxtimeDiff2.fill_array(timeDataqdetD)
tpxXY1.Fill(data['y'],data['x'])
for i, data in enumerate(TimepixBData):
tpxXY2.Fill(data['y'],data['x'])
taggedADC = [[]]*2
taggedClockLong = [[]]*2
taggedClockShort = [[]]*2
previousStart = 0
taggedClockStart = 0
addToArray = True
start301 = 0
prev301 = 0
arrayIndex = 0
epicsIndex = 0
def taggerTimepix():
global taggedADC
global taggedClockLong
global taggedClockShort
global previousStart
global taggedClockStart
global start301
global prev301
global arrayIndex
global epicsIndex
adc = aq.adcArray
longClock = adc[np.where(adc[:,0]==301)][0][1]
if((longClock-prev301)==373*4):
prev301 = longClock
arrayIndex += 1
taggedADC[arrayIndex%2] = []
taggedClockLong[arrayIndex%2] = []
taggedClockShort[arrayIndex%2] = []
#print longClock
#print epicsIndex,arrayIndex,'TRIGGER'
#print taggedADC
taggedADC[arrayIndex%2] += [aqdet.TaggerChannels(adc)]
taggedClockLong[arrayIndex%2] += [adc[np.where(adc[:,0]==301)[0][0],1]]
taggedClockShort[arrayIndex%2] += [adc[np.where(adc[:,0]==300)[0][0],1]]
if(len(aq.epicsBuffers) and aq.eventNo!=0):
# Create timepix time array
nHitsA = aq.getEpicsPV('PPOL:TIMEPIXA:NHITS')
encodedA = aq.getEpicsPV('PPOL:TIMEPIXA:ENCODED')
if(previousStart != encodedA[0]):
previousStart = encodedA[0]
if(prev301==0):
prev301 = longClock
return
# Shift timing ADCs to start from 0
taggedClockStart = taggedClockLong[epicsIndex%2][0]*65536*2.5
print(taggedClockStart)
TimepixAData = aqdet.TimepixDecode(nHitsA,encodedA)
nsTimeA = 25*TimepixAData[['ToA']].astype(float) - 25/16*TimepixAData[['FToA']].astype(float)
taggedClock = [(taggedClockShort[epicsIndex%2][i]+taggedClockLong[epicsIndex%2][i]*65536)*2.5-taggedClockStart for i in range(len(taggedClockShort[epicsIndex%2]))]
#Shortened list of timepix hits
#removeCluster = nsTimeA
removeCluster = np.extract(([0]+np.diff(nsTimeA))>10,nsTimeA)
#print taggedClock
#Fill histograms
for i, time in enumerate(taggedClock):
for channel in taggedADC[epicsIndex%2][i]:
if(channel[0]==81):
timeDiff2D = np.full((len(removeCluster),2),time)
timeDiff2D[:,0] = removeCluster-time-channel[1]
#timeDiff = np.extract(abs(removeCluster-time-channel[1])<1E8,removeCluster-time-channel[1])
taggtpxDiff.fill_array(timeDiff2D[:,0])
taggtpxDiff2.fill_array(timeDiff2D)
#for j, diff in enumerate(timeDiff):
# taggtpxDiff2.Fill(diff,time)
# Reset and fill for next epics buffer
taggedADC[epicsIndex%2] = []
taggedClockLong[epicsIndex%2] = []
taggedClockShort[epicsIndex%2] = []
#epicsIndex += 1
#print prev301,longClock
#print epicsIndex,arrayIndex,'EPICS'
epicsIndex = arrayIndex
def fillADCHist():
global adchist
global adchist2d
adchist.fill_array(aq.adcArray['adc'])
adchist2d.fill_array(np.vstack((aq.adcArray['adc'],aq.adcArray['val'])).T)
if(aq.eventNo%10000==0):
print('number',aq.eventNo)
def fillTP3():
if(aq.epicsEvent==1):
nHitsA = aq.getEpicsPV('PPOL:TIMEPIXA:NHITS')
encodedA = aq.getEpicsPV('PPOL:TIMEPIXA:ENCODED')
TimepixAData = Timepix.Decode(nHitsA,encodedA)
print TimepixAData['y']
tpxXY1.fill_array(np.vstack((TimepixAData['y'],TimepixAData['x'])).T)
nsTimeA = 25*TimepixAData[['ToA']].astype(float) - 25/16*TimepixAData[['FToA']].astype(float)
print nsTimeA/1000000000
tpxTime.fill_array(nsTimeA/1000000000)
def ADCTrends():
adc1 = 927
adc2 = 1026
adc = aq.adcArray
index1 = np.where(adc[:,0]==adc1)[0]
index2 = np.where(adc[:,0]==adc2)[0]
for indexA in index1:
valueA = aq.adcArray[indexA,1]
for indexB in index2:
adccompare.Fill(valueA,aq.adcArray[indexB,1])
def ADCEventTrend():
adc1 = 301
adc2 = 300
adc = aq.adcArray
index1 = np.where(adc[:,0]==adc1)[0]
index2 = np.where(adc[:,0]==adc2)[0]
for indexA in index1:
adcevent.Fill(aq.eventNo,aq.adcArray[indexA,1])
for indexA in index2:
adcevent2.Fill(aq.eventNo,aq.adcArray[indexA,1])
if __name__ == "__main__": main() # call main comes at the end: a quirk of python