forked from avinashpaliwal/Super-SloMo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
335 lines (228 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#[Super SloMo]
##High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
import argparse
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import model
import dataloader
from math import log10
import datetime
from tensorboardX import SummaryWriter
# For parsing commandline arguments
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_root", type=str, required=True, help='path to dataset folder containing train-test-validation folders')
parser.add_argument("--checkpoint_dir", type=str, required=True, help='path to folder for saving checkpoints')
parser.add_argument("--checkpoint", type=str, help='path of checkpoint for pretrained model')
parser.add_argument("--train_continue", type=bool, default=False, help='If resuming from checkpoint, set to True and set `checkpoint` path. Default: False.')
parser.add_argument("--epochs", type=int, default=200, help='number of epochs to train. Default: 200.')
parser.add_argument("--train_batch_size", type=int, default=6, help='batch size for training. Default: 6.')
parser.add_argument("--validation_batch_size", type=int, default=10, help='batch size for validation. Default: 10.')
parser.add_argument("--init_learning_rate", type=float, default=0.0001, help='set initial learning rate. Default: 0.0001.')
parser.add_argument("--milestones", type=list, default=[100, 150], help='Set to epoch values where you want to decrease learning rate by a factor of 0.1. Default: [100, 150]')
parser.add_argument("--progress_iter", type=int, default=100, help='frequency of reporting progress and validation. N: after every N iterations. Default: 100.')
parser.add_argument("--checkpoint_epoch", type=int, default=5, help='checkpoint saving frequency. N: after every N epochs. Each checkpoint is roughly of size 151 MB.Default: 5.')
args = parser.parse_args()
##[TensorboardX](https://github.com/lanpa/tensorboardX)
### For visualizing loss and interpolated frames
writer = SummaryWriter('log')
###Initialize flow computation and arbitrary-time flow interpolation CNNs.
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
flowComp = model.UNet(6, 4)
flowComp.to(device)
ArbTimeFlowIntrp = model.UNet(20, 5)
ArbTimeFlowIntrp.to(device)
###Initialze backward warpers for train and validation datasets
trainFlowBackWarp = model.backWarp(352, 352, device)
trainFlowBackWarp = trainFlowBackWarp.to(device)
validationFlowBackWarp = model.backWarp(640, 352, device)
validationFlowBackWarp = validationFlowBackWarp.to(device)
###Load Datasets
# Channel wise mean calculated on adobe240-fps training dataset
mean = [0.429, 0.431, 0.397]
std = [1, 1, 1]
normalize = transforms.Normalize(mean=mean,
std=std)
transform = transforms.Compose([transforms.ToTensor(), normalize])
trainset = dataloader.SuperSloMo(root=args.dataset_root + '/train', transform=transform, train=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.train_batch_size, shuffle=True)
validationset = dataloader.SuperSloMo(root=args.dataset_root + '/validation', transform=transform, randomCropSize=(640, 352), train=False)
validationloader = torch.utils.data.DataLoader(validationset, batch_size=args.validation_batch_size, shuffle=False)
print(trainset, validationset)
###Create transform to display image from tensor
negmean = [x * -1 for x in mean]
revNormalize = transforms.Normalize(mean=negmean, std=std)
TP = transforms.Compose([revNormalize, transforms.ToPILImage()])
###Utils
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
###Loss and Optimizer
L1_lossFn = nn.L1Loss()
MSE_LossFn = nn.MSELoss()
params = list(ArbTimeFlowIntrp.parameters()) + list(flowComp.parameters())
optimizer = optim.Adam(params, lr=args.init_learning_rate)
# scheduler to decrease learning rate by a factor of 10 at milestones.
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=0.1)
###Initializing VGG16 model for perceptual loss
vgg16 = torchvision.models.vgg16(pretrained=True)
vgg16_conv_4_3 = nn.Sequential(*list(vgg16.children())[0][:22])
vgg16_conv_4_3.to(device)
for param in vgg16_conv_4_3.parameters():
param.requires_grad = False
### Validation function
#
def validate():
# For details see training.
psnr = 0
tloss = 0
flag = 1
with torch.no_grad():
for validationIndex, (validationData, validationFrameIndex) in enumerate(validationloader, 0):
frame0, frameT, frame1 = validationData
I0 = frame0.to(device)
I1 = frame1.to(device)
IFrame = frameT.to(device)
flowOut = flowComp(torch.cat((I0, I1), dim=1))
F_0_1 = flowOut[:,:2,:,:]
F_1_0 = flowOut[:,2:,:,:]
fCoeff = model.getFlowCoeff(validationFrameIndex, device)
F_t_0 = fCoeff[0] * F_0_1 + fCoeff[1] * F_1_0
F_t_1 = fCoeff[2] * F_0_1 + fCoeff[3] * F_1_0
g_I0_F_t_0 = validationFlowBackWarp(I0, F_t_0)
g_I1_F_t_1 = validationFlowBackWarp(I1, F_t_1)
intrpOut = ArbTimeFlowIntrp(torch.cat((I0, I1, F_0_1, F_1_0, F_t_1, F_t_0, g_I1_F_t_1, g_I0_F_t_0), dim=1))
F_t_0_f = intrpOut[:, :2, :, :] + F_t_0
F_t_1_f = intrpOut[:, 2:4, :, :] + F_t_1
V_t_0 = F.sigmoid(intrpOut[:, 4:5, :, :])
V_t_1 = 1 - V_t_0
g_I0_F_t_0_f = validationFlowBackWarp(I0, F_t_0_f)
g_I1_F_t_1_f = validationFlowBackWarp(I1, F_t_1_f)
wCoeff = model.getWarpCoeff(validationFrameIndex, device)
Ft_p = (wCoeff[0] * V_t_0 * g_I0_F_t_0_f + wCoeff[1] * V_t_1 * g_I1_F_t_1_f) / (wCoeff[0] * V_t_0 + wCoeff[1] * V_t_1)
# For tensorboard
if (flag):
retImg = torchvision.utils.make_grid([revNormalize(frame0[0]), revNormalize(frameT[0]), revNormalize(Ft_p.cpu()[0]), revNormalize(frame1[0])], padding=10)
flag = 0
#loss
recnLoss = L1_lossFn(Ft_p, IFrame)
prcpLoss = MSE_LossFn(vgg16_conv_4_3(Ft_p), vgg16_conv_4_3(IFrame))
warpLoss = L1_lossFn(g_I0_F_t_0, IFrame) + L1_lossFn(g_I1_F_t_1, IFrame) + L1_lossFn(validationFlowBackWarp(I0, F_1_0), I1) + L1_lossFn(validationFlowBackWarp(I1, F_0_1), I0)
loss_smooth_1_0 = torch.mean(torch.abs(F_1_0[:, :, :, :-1] - F_1_0[:, :, :, 1:])) + torch.mean(torch.abs(F_1_0[:, :, :-1, :] - F_1_0[:, :, 1:, :]))
loss_smooth_0_1 = torch.mean(torch.abs(F_0_1[:, :, :, :-1] - F_0_1[:, :, :, 1:])) + torch.mean(torch.abs(F_0_1[:, :, :-1, :] - F_0_1[:, :, 1:, :]))
loss_smooth = loss_smooth_1_0 + loss_smooth_0_1
loss = 204 * recnLoss + 102 * warpLoss + 0.005 * prcpLoss + loss_smooth
tloss += loss.item()
#psnr
MSE_val = MSE_LossFn(Ft_p, IFrame)
psnr += (10 * log10(1 / MSE_val.item()))
return (psnr / len(validationloader)), (tloss / len(validationloader)), retImg
### Initialization
if args.train_continue:
dict1 = torch.load(args.checkpoint)
ArbTimeFlowIntrp.load_state_dict(dict1['state_dictAT'])
flowComp.load_state_dict(dict1['state_dictFC'])
else:
dict1 = {'loss': [], 'valLoss': [], 'valPSNR': [], 'epoch': -1}
### Training
import time
start = time.time()
cLoss = dict1['loss']
valLoss = dict1['valLoss']
valPSNR = dict1['valPSNR']
checkpoint_counter = 0
### Main training loop
for epoch in range(dict1['epoch'] + 1, args.epochs):
print("Epoch: ", epoch)
# Append and reset
cLoss.append([])
valLoss.append([])
valPSNR.append([])
iLoss = 0
# Increment scheduler count
scheduler.step()
for trainIndex, (trainData, trainFrameIndex) in enumerate(trainloader, 0):
## Getting the input and the target from the training set
frame0, frameT, frame1 = trainData
I0 = frame0.to(device)
I1 = frame1.to(device)
IFrame = frameT.to(device)
optimizer.zero_grad()
# Calculate flow between reference frames I0 and I1
flowOut = flowComp(torch.cat((I0, I1), dim=1))
# Extracting flows between I0 and I1 - F_0_1 and F_1_0
F_0_1 = flowOut[:,:2,:,:]
F_1_0 = flowOut[:,2:,:,:]
fCoeff = model.getFlowCoeff(trainFrameIndex, device)
# Calculate intermediate flows
F_t_0 = fCoeff[0] * F_0_1 + fCoeff[1] * F_1_0
F_t_1 = fCoeff[2] * F_0_1 + fCoeff[3] * F_1_0
# Get intermediate frames from the intermediate flows
g_I0_F_t_0 = trainFlowBackWarp(I0, F_t_0)
g_I1_F_t_1 = trainFlowBackWarp(I1, F_t_1)
# Calculate optical flow residuals and visibility maps
intrpOut = ArbTimeFlowIntrp(torch.cat((I0, I1, F_0_1, F_1_0, F_t_1, F_t_0, g_I1_F_t_1, g_I0_F_t_0), dim=1))
# Extract optical flow residuals and visibility maps
F_t_0_f = intrpOut[:, :2, :, :] + F_t_0
F_t_1_f = intrpOut[:, 2:4, :, :] + F_t_1
V_t_0 = F.sigmoid(intrpOut[:, 4:5, :, :])
V_t_1 = 1 - V_t_0
# Get intermediate frames from the intermediate flows
g_I0_F_t_0_f = trainFlowBackWarp(I0, F_t_0_f)
g_I1_F_t_1_f = trainFlowBackWarp(I1, F_t_1_f)
wCoeff = model.getWarpCoeff(trainFrameIndex, device)
# Calculate final intermediate frame
Ft_p = (wCoeff[0] * V_t_0 * g_I0_F_t_0_f + wCoeff[1] * V_t_1 * g_I1_F_t_1_f) / (wCoeff[0] * V_t_0 + wCoeff[1] * V_t_1)
# Loss
recnLoss = L1_lossFn(Ft_p, IFrame)
prcpLoss = MSE_LossFn(vgg16_conv_4_3(Ft_p), vgg16_conv_4_3(IFrame))
warpLoss = L1_lossFn(g_I0_F_t_0, IFrame) + L1_lossFn(g_I1_F_t_1, IFrame) + L1_lossFn(trainFlowBackWarp(I0, F_1_0), I1) + L1_lossFn(trainFlowBackWarp(I1, F_0_1), I0)
loss_smooth_1_0 = torch.mean(torch.abs(F_1_0[:, :, :, :-1] - F_1_0[:, :, :, 1:])) + torch.mean(torch.abs(F_1_0[:, :, :-1, :] - F_1_0[:, :, 1:, :]))
loss_smooth_0_1 = torch.mean(torch.abs(F_0_1[:, :, :, :-1] - F_0_1[:, :, :, 1:])) + torch.mean(torch.abs(F_0_1[:, :, :-1, :] - F_0_1[:, :, 1:, :]))
loss_smooth = loss_smooth_1_0 + loss_smooth_0_1
# Total Loss - Coefficients 204 and 102 are used instead of 0.8 and 0.4
# since the loss in paper is calculated for input pixels in range 0-255
# and the input to our network is in range 0-1
loss = 204 * recnLoss + 102 * warpLoss + 0.005 * prcpLoss + loss_smooth
# Backpropagate
loss.backward()
optimizer.step()
iLoss += loss.item()
# Validation and progress every `args.progress_iter` iterations
if ((trainIndex % args.progress_iter) == args.progress_iter - 1):
end = time.time()
psnr, vLoss, valImg = validate()
valPSNR[epoch].append(psnr)
valLoss[epoch].append(vLoss)
#Tensorboard
itr = trainIndex + epoch * (len(trainloader))
writer.add_scalars('Loss', {'trainLoss': iLoss/args.progress_iter,
'validationLoss': vLoss}, itr)
writer.add_scalar('PSNR', psnr, itr)
writer.add_image('Validation',valImg , itr)
#####
endVal = time.time()
print(" Loss: %0.6f Iterations: %4d/%4d TrainExecTime: %0.1f ValLoss:%0.6f ValPSNR: %0.4f ValEvalTime: %0.2f LearningRate: %f" % (iLoss / args.progress_iter, trainIndex, len(trainloader), end - start, vLoss, psnr, endVal - end, get_lr(optimizer)))
cLoss[epoch].append(iLoss/args.progress_iter)
iLoss = 0
start = time.time()
# Create checkpoint after every `args.checkpoint_epoch` epochs
if ((epoch % args.checkpoint_epoch) == args.checkpoint_epoch - 1):
dict1 = {
'Detail':"End to end Super SloMo.",
'epoch':epoch,
'timestamp':datetime.datetime.now(),
'trainBatchSz':args.train_batch_size,
'validationBatchSz':args.validation_batch_size,
'learningRate':get_lr(optimizer),
'loss':cLoss,
'valLoss':valLoss,
'valPSNR':valPSNR,
'state_dictFC': flowComp.state_dict(),
'state_dictAT': ArbTimeFlowIntrp.state_dict(),
}
torch.save(dict1, args.checkpoint_dir + "/SuperSloMo" + str(checkpoint_counter) + ".ckpt")
checkpoint_counter += 1