forked from sczhou/CodeFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
189 lines (168 loc) · 6.44 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
This file is used for deploying replicate demo:
https://replicate.com/sczhou/codeformer
running: cog predict -i image=@inputs/whole_imgs/04.jpg -i codeformer_fidelity=0.5 -i upscale=2
push: cog push r8.im/sczhou/codeformer
"""
import tempfile
import cv2
import torch
from torchvision.transforms.functional import normalize
try:
from cog import BasePredictor, Input, Path
except Exception:
print('please install cog package')
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.realesrgan_utils import RealESRGANer
from basicsr.utils.registry import ARCH_REGISTRY
from facelib.utils.face_restoration_helper import FaceRestoreHelper
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda:0"
self.upsampler = set_realesrgan()
self.net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(self.device)
ckpt_path = "weights/CodeFormer/codeformer.pth"
checkpoint = torch.load(ckpt_path)[
"params_ema"
] # update file permission if cannot load
self.net.load_state_dict(checkpoint)
self.net.eval()
def predict(
self,
image: Path = Input(description="Input image"),
codeformer_fidelity: float = Input(
default=0.5,
ge=0,
le=1,
description="Balance the quality (lower number) and fidelity (higher number).",
),
background_enhance: bool = Input(
description="Enhance background image with Real-ESRGAN", default=True
),
face_upsample: bool = Input(
description="Upsample restored faces for high-resolution AI-created images",
default=True,
),
upscale: int = Input(
description="The final upsampling scale of the image",
default=2,
),
) -> Path:
"""Run a single prediction on the model"""
# take the default setting for the demo
has_aligned = False
only_center_face = False
draw_box = False
detection_model = "retinaface_resnet50"
self.face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model=detection_model,
save_ext="png",
use_parse=True,
device=self.device,
)
bg_upsampler = self.upsampler if background_enhance else None
face_upsampler = self.upsampler if face_upsample else None
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
if has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
self.face_helper.cropped_faces = [img]
else:
self.face_helper.read_image(img)
# get face landmarks for each face
num_det_faces = self.face_helper.get_face_landmarks_5(
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
)
print(f"\tdetect {num_det_faces} faces")
# align and warp each face
self.face_helper.align_warp_face()
# face restoration for each cropped face
for idx, cropped_face in enumerate(self.face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(
cropped_face / 255.0, bgr2rgb=True, float32=True
)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
with torch.no_grad():
output = self.net(
cropped_face_t, w=codeformer_fidelity, adain=True
)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f"\tFailed inference for CodeFormer: {error}")
restored_face = tensor2img(
cropped_face_t, rgb2bgr=True, min_max=(-1, 1)
)
restored_face = restored_face.astype("uint8")
self.face_helper.add_restored_face(restored_face)
# paste_back
if not has_aligned:
# upsample the background
if bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
if face_upsample and face_upsampler is not None:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img,
draw_box=draw_box,
face_upsampler=face_upsampler,
)
else:
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=bg_img, draw_box=draw_box
)
# save restored img
out_path = Path(tempfile.mkdtemp()) / 'output.png'
imwrite(restored_img, str(out_path))
return out_path
def imread(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def set_realesrgan():
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn(
"The unoptimized RealESRGAN is slow on CPU. We do not use it. "
"If you really want to use it, please modify the corresponding codes.",
category=RuntimeWarning,
)
upsampler = None
else:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
upsampler = RealESRGANer(
scale=2,
model_path="./weights/realesrgan/RealESRGAN_x2plus.pth",
model=model,
tile=400,
tile_pad=40,
pre_pad=0,
half=True,
)
return upsampler