-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_reco_service.py
185 lines (138 loc) · 5.15 KB
/
image_reco_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import re
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
#!flask/bin/python
from flask import Flask, jsonify
from flask import make_response
from flask import request, render_template
from flask_bootstrap import Bootstrap
from werkzeug import secure_filename
app = Flask(__name__)
bootstrap = Bootstrap(app)
@app.route('/')
def index():
return render_template("upload.html")
# import default command line flags from TensorFlow
FLAGS = tf.app.flags.FLAGS
# define directory that the model is stored in (default is the current directory)
tf.app.flags.DEFINE_string(
'model_dir', '/home/ubuntu/flaskapp',
"""Path to output_graph.pb, """
"""output_labels.txt""")
tf.app.flags.DEFINE_integer('num_top_predictions', 3,
"""Display this many predictions.""")
# Classificaiton endpoint
@app.route("/classify", methods=["POST"])
def classify():
create_graph()
print("Model loaded")
node_lookup = NodeLookup()
print("Node lookup loaded")
predictions = dict(run_inference_on_image(request.data))
print(predictions)
return jsonify(predictions=predictions)
@app.errorhandler(404)
def not_found(error):
return make_response(jsonify({'error': 'Not found'}), 404)
# The following code performs the recognition, and is derived from the examples
# provided in the Tensorflow package
# ==============================================================================
#
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple image classification with Inception.
Run image classification with Inception trained on ImageNet 2012 Challenge data
set.
This program creates a graph from a saved GraphDef protocol buffer,
and runs inference on an input JPEG image. It outputs human readable
strings of the top 5 predictions along with their probabilities.
Change the --image_file argument to any jpg image to compute a
classification of that image.
Please see the tutorial and website for a detailed description of how
to use this script to perform image recognition.
https://tensorflow.org/tutorials/image_recognition/
"""
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self, label_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
FLAGS.model_dir, 'output_labels.txt')
self.node_lookup = self.load(label_lookup_path)
def load(self, label_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
Returns:
dict from integer node ID to human-readable string.
"""
node_id_to_name = {}
label_file = open(label_lookup_path)
i = 0
# labels are ordered from 0 to N in the lookup file
for line in label_file:
node_id_to_name[i] = line.strip()
i = i + 1
return node_id_to_name
# return the friendly name for the given node_id
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
FLAGS.model_dir, 'output_graph.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
# sess = None
# node_lookup = None
def run_inference_on_image(image_data):
"""Runs inference on an image.
Args:
image_data: Image data.
Returns:
Nothing
"""
sess = tf.Session()
print("Tensorflow session ready")
node_lookup = NodeLookup()
print("Node lookup loaded")
# Runs the softmax tensor by feeding the image_data as input to the graph.
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
predictions = np.squeeze(predictions)
# sort the predictions
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
# map to the friendly names and return the tuples
return [(node_lookup.id_to_string(node_id), float(predictions[node_id])) for node_id in top_k]
if __name__ == '__main__':
create_graph()
print("Model loaded")
node_lookup = NodeLookup()
print("Node lookup loaded")
sess = tf.Session()
print("Tensorflow session ready")
print("Launching web application...")
app.run(debug=True)