forked from su2code/SU2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_template_basic.cfg
645 lines (623 loc) · 24.3 KB
/
config_template_basic.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: _________________________________________________________ %
% Author: ___________________________________________________________________ %
% Institution: ______________________________________________________________ %
% Date: __________ %
% File Version 4.3.0 "Cardinal" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES)
PHYSICAL_PROBLEM= EULER
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= NONE
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE)
REGIME_TYPE= COMPRESSIBLE
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
% Newtons = kg m/s^2, Pascals = N/m^2,
% Density = kg/m^3, Speed = m/s,
% Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2,
% psf = lbf/ft^2, Density = slug/ft^3,
% Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= SI
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees, only for compressible flows)
AoA= 1.25
%
% Activate fixed lift mode (specify a CL instead of AoA, NO/YES)
FIXED_CL_MODE= NO
%
% Target coefficient of lift for fixed lift mode (0.0 by default)
TARGET_CL= 0.0
%
% Iterations to re-evaluate the angle of attack (100 by default)
ITER_FIXED_CL= 100
%
% Damping factor for fixed CL mode (0.1 by default)
DAMP_FIXED_CL= 0.2
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K, 518.67 R by default)
FREESTREAM_TEMPERATURE= 288.15
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 6.5E6
%
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.0
% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------------------%
%
% Free-stream density (1.2886 Kg/m^3, 0.0025 slug/ft^3 by default)
FREESTREAM_DENSITY= 1.2886
%
% Free-stream velocity (1.0 m/s, 1.0 ft/s by default)
FREESTREAM_VELOCITY= ( 1.0, 0.00, 0.00 )
%
% Free-stream viscosity (1.853E-5 N s/m^2, 3.87E-7 lbf s/ft^2 by default)
FREESTREAM_VISCOSITY= 1.853E-5
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional
% moment (m or in)
REF_LENGTH_MOMENT= 1.0
%
% Reference area for force coefficients (0 implies automatic
% calculation) (m^2 or in^2)
REF_AREA= 1.0
%
% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL
% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER,
% DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL)
UNSTEADY_SIMULATION= NO
%
% Time Step for dual time stepping simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0
UNST_TIMESTEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
UNST_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
% Number of internal iterations (dual time method)
UNST_INT_ITER= 200
%
% Integer number of periodic time instances for Time Spectral
TIME_INSTANCES= 1
%
% Iteration number to begin unsteady restarts
UNST_RESTART_ITER= 0
% -------------------------- ENGINE SIMULATION --------------------------------%
%
% Damping factor for the engine inflow.
DAMP_ENGINE_INFLOW= 0.95
%
% Damping factor for the engine exhaust.
DAMP_ENGINE_EXHAUST= 0.95
%
% Damping factor for the engine bleed.
DAMP_ENGINE_BLEED= 0.95
%
% Engine nu factor (SA model).
ENGINE_NU_FACTOR= 30.0
%
% Initialization with a subsonic flow around the engine.
SUBSONIC_ENGINE= NO
%
% Coordinates of the box that defines the subsonic region (Xmin, Ymin, Zmin,
% Xmax, Ymax, Zmax)
SUBSONIC_ENGINE_BOX= ( -0.5, -0.49, 0.0, 2.5, 0.49, 0.0 )
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
MARKER_EULER= ( airfoil )
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= ( NONE )
%
% Navier-Stokes (no-slip), isothermal wall marker(s) (NONE = no marker)
% Format: ( marker name, constant wall temperature (K), ... )
MARKER_ISOTHERMAL= ( NONE )
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( farfield )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( NONE )
%
% Near-Field boundary marker(s) (NONE = no marker)
MARKER_NEARFIELD= ( NONE )
%
% Zone interface boundary marker(s) (NONE = no marker)
MARKER_INTERFACE= ( NONE )
%
% Actuator disk boundary marker(s) (NONE = no marker)
% Format: ( inlet face marker, outlet face marker,
% rotation_angle_x-axis, rotation_angle_y-axis, rotation_angle_z-axis,
% root radius, tip radius, pressure jump, temperature jump, rev/min,
% uniform(0)/linear(1) distribution, ... )
MARKER_ACTDISK= ( NONE )
%
% Inlet boundary type (TOTAL_CONDITIONS, MASS_FLOW)
INLET_TYPE= TOTAL_CONDITIONS
%
% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Total Conditions: (inlet marker, total temp, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Mass Flow: (inlet marker, density, velocity magnitude, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
MARKER_INLET= ( NONE )
%
% Supersonic inlet boundary marker(s) (NONE = no marker)
% Format: (inlet marker, temperature, static pressure, velocity_x,
% velocity_y, velocity_z, ... ), i.e. primitive variables specified.
MARKER_SUPERSONIC_INLET= ( NONE )
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= ( NONE )
%
% Supersonic outlet boundary marker(s) (NONE = no marker)
MARKER_SUPERSONIC_OUTLET= ( NONE )
%
% Periodic boundary marker(s) (NONE = no marker)
% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y,
% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis,
% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... )
MARKER_PERIODIC= ( NONE )
%
% Engine inflow boundary marker(s) (NONE = no marker)
% Format: (engine inflow marker, fan face Mach, ... )
MARKER_ENGINE_INFLOW= ( NONE )
%
% Engine bleed boundary marker(s) with the following formats (NONE = no marker)
% Format: (engine bleed marker, mass flow rate, total temp, ... )
MARKER_ENGINE_BLEED= ( NONE )
%
% Engine exhaust boundary marker(s) with the following formats (NONE = no marker)
% Format: (engine exhaust marker, total nozzle temp, total nozzle pressure, ... )
MARKER_ENGINE_EXHAUST= ( NONE )
% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( airfoil )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( airfoil )
%
% Marker(s) of the surface where obj. func. (design problem) will be evaluated
MARKER_DESIGNING = ( airfoil )
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 10.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.25, 50.0 )
%
% Objective function in optimization problem (DRAG, LIFT, SIDEFORCE, MOMENT_X,
% MOMENT_Y, MOMENT_Z, EFFICIENCY,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% FORCE_X, FORCE_Y, FORCE_Z, THRUST,
% TORQUE, FREE_SURFACE, TOTAL_HEATFLUX,
% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE,
% INVERSE_DESIGN_HEATFLUX, AVG_TOTAL_PRESSURE,
% MASS_FLOW_RATE)
OBJECTIVE_FUNCTION= DRAG
% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Reference element length for computing the slope and sharp edges
% limiters (0.1 m, 5.0 in by default)
REF_ELEM_LENGTH= 0.1
%
% Coefficient for the limiter
LIMITER_COEFF= 0.3
%
% Freeze the value of the limiter after a number of iterations
LIMITER_ITER= 999999
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER_JACOBI,
% SMOOTHER_ILU0, SMOOTHER_LUSGS,
% SMOOTHER_LINELET)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU0, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5
% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER
%
% Slope limiter (VENKATAKRISHNAN, BARTH_JESPERSEN)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_FLOW= 1.0
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_TURB= 1ST_ORDER
%
% Slope limiter (VENKATAKRISHNAN)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 1.0
%
% Relaxation coefficient
RELAXATION_FACTOR_TURB= 1.0
% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, ROE)
CONV_NUM_METHOD_ADJFLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_ADJFLOW= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, SHARP_EDGES, WALL_DISTANCE)
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN
%
% 1st, 2nd, and 4th order artificial dissipation coefficients
AD_COEFF_ADJFLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT)
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_ADJFLOW= 1.0
%
% Reduction factor of the CFL coefficient in the adjoint problem
CFL_REDUCTION_ADJFLOW= 0.8
%
% Limit value for the adjoint variable
LIMIT_ADJFLOW= 1E6
% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------%
%
% Geometrical evaluation mode (FUNCTION, GRADIENT)
GEO_MODE= FUNCTION
%
% Marker(s) of the surface where geometrical based func. will be evaluated
GEO_MARKER= ( airfoil )
%
% Number of airfoil sections
GEO_NUMBER_SECTIONS= 5
%
% Orientation of airfoil sections (X_AXIS, Y_AXIS, Z_AXIS)
GEO_ORIENTATION_SECTIONS= Y_AXIS
%
% Location (coordinate) of the airfoil sections (MinValue, MaxValue)
GEO_LOCATION_SECTIONS= (1.5, 3.5)
%
% Plot loads and Cp distributions on each airfoil section
GEO_PLOT_SECTIONS= NO
% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------%
%
% Kind of deformation (TRANSLATION, ROTATION, SCALE,
% FFD_SETTING,
% FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS
% FFD_DIHEDRAL_ANGLE, FFD_TWIST_ANGLE, FFD_ROTATION,
% FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D,
% HICKS_HENNE, PARABOLIC, NACA_4DIGITS, AIRFOIL)
DV_KIND= FFD_SETTING
%
% Marker of the surface in which we are going apply the shape deformation
DV_MARKER= ( airfoil )
%
% Parameters of the shape deformation
% - TRANSLATION ( x_Disp, y_Disp, z_Disp )
% - ROTATION ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - SCALE ( 1.0 )
% - FFD_SETTING ( 1.0 )
% - FFD_CONTROL_POINT ( FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp )
% - FFD_CAMBER ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_THICKNESS ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_DIHEDRAL_ANGLE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_TWIST_ANGLE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_ROTATION ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_CONTROL_POINT_2D ( FFD_BoxTag, i_Ind, j_Ind, x_Disp, y_Disp )
% - FFD_CAMBER_2D ( FFD_BoxTag, i_Ind )
% - FFD_THICKNESS_2D ( FFD_BoxTag, i_Ind )
% - HICKS_HENNE ( Lower Surface (0)/Upper Surface (1)/Only one Surface (2), x_Loc )
% - PARABOLIC ( Center, Thickness )
% - NACA_4DIGITS ( 1st digit, 2nd digit, 3rd and 4th digit )
% - AIRFOIL ( 1.0 )
DV_PARAM= ( 1, 0.5 )
%
% Value of the shape deformation
DV_VALUE= 0.01
% ------------------------ GRID DEFORMATION PARAMETERS ------------------------%
%
% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB)
DEFORM_LINEAR_SOLVER= FGMRES
%
% Number of smoothing iterations for FEA mesh deformation
DEFORM_LINEAR_ITER= 1000
%
% Number of nonlinear deformation iterations (surface deformation increments)
DEFORM_NONLINEAR_ITER= 1
%
% Print the residuals during mesh deformation to the console (YES, NO)
DEFORM_CONSOLE_OUTPUT= YES
%
% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME,
% WALL_DISTANCE, CONSTANT_STIFFNESS)
DEFORM_STIFFNESS_TYPE= WALL_DISTANCE
%
% Visualize the deformation (NO, YES)
VISUALIZE_DEFORMATION= NO
% -------------------- FREE-FORM DEFORMATION PARAMETERS -----------------------%
%
% Tolerance of the Free-Form Deformation point inversion
FFD_TOLERANCE= 1E-10
%
% Maximum number of iterations in the Free-Form Deformation point inversion
FFD_ITERATIONS= 500
%
% FFD box definition: 3D case (FFD_BoxTag, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3, X4, Y4, Z4,
% X5, Y5, Z5, X6, Y6, Z6, X7, Y7, Z7, X8, Y8, Z8)
% 2D case (FFD_BoxTag, X1, Y1, 0.0, X2, Y2, 0.0, X3, Y3, 0.0, X4, Y4, 0.0,
% 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
FFD_DEFINITION= (MAIN_BOX, 0.5, 0.25, -0.25, 1.5, 0.25, -0.25, 1.5, 0.75, -0.25, 0.5, 0.75, -0.25, 0.5, 0.25, 0.25, 1.5, 0.25, 0.25, 1.5, 0.75, 0.25, 0.5, 0.75, 0.25)
%
% FFD box degree: 3D case (x_degree, y_degree, z_degree)
% 2D case (x_degree, y_degree, 0)
FFD_DEGREE= (10, 10, 1)
%
% Surface continuity at the intersection with the FFD (1ST_DERIVATIVE, 2ND_DERIVATIVE)
FFD_CONTINUITY= 2ND_DERIVATIVE
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
EXT_ITER= 999999
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 5
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS)
CAUCHY_FUNC_FLOW= DRAG
%
% Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH)
CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= mesh_NACA0012_inv.su2
%
% Mesh input file format (SU2, CGNS)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW,
% FIELDVIEW, FIELDVIEW_BINARY)
OUTPUT_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file with the forces breakdown
BREAKDOWN_FILENAME= forces_breakdown.dat
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function
VALUE_OBJFUNC_FILENAME= of_eval.dat
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
WRT_SOL_FREQ= 1000
%
% Writing solution file frequency for physical time steps (dual time)
WRT_SOL_FREQ_DUALTIME= 1
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Writing convergence history frequency (dual time, only written to screen)
WRT_CON_FREQ_DUALTIME= 10
%
% Output residual values in the solution files
WRT_RESIDUALS= NO
%
% Output limiters values in the solution files
WRT_LIMITERS= NO
%
% Output the sharp edges detector
WRT_SHARPEDGES= NO
%
% Minimize the required output memory
LOW_MEMORY_OUTPUT= NO
%
% Verbosity of console output: NONE removes minor MPI overhead (NONE, HIGH)
CONSOLE_OUTPUT_VERBOSITY= HIGH
% --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------%
%
% Available flow based objective functions or constraint functions
% DRAG, LIFT, SIDEFORCE, EFFICIENCY,
% FORCE_X, FORCE_Y, FORCE_Z,
% MOMENT_X, MOMENT_Y, MOMENT_Z,
% THRUST, TORQUE, FIGURE_OF_MERIT,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% TOTAL_HEATFLUX, MAXIMUM_HEATFLUX,
% INVERSE_DESIGN_PRESSURE, INVERSE_DESIGN_HEATFLUX,
% FREE_SURFACE, AVG_TOTAL_PRESSURE, MASS_FLOW_RATE
%
% Available geometrical based objective functions or constraint functions
% MAX_THICKNESS, 1/4_THICKNESS, 1/2_THICKNESS, 3/4_THICKNESS, AREA, AOA, CHORD,
% MAX_THICKNESS_SEC1, MAX_THICKNESS_SEC2, MAX_THICKNESS_SEC3, MAX_THICKNESS_SEC4, MAX_THICKNESS_SEC5,
% 1/4_THICKNESS_SEC1, 1/4_THICKNESS_SEC2, 1/4_THICKNESS_SEC3, 1/4_THICKNESS_SEC4, 1/4_THICKNESS_SEC5,
% 1/2_THICKNESS_SEC1, 1/2_THICKNESS_SEC2, 1/2_THICKNESS_SEC3, 1/2_THICKNESS_SEC4, 1/2_THICKNESS_SEC5,
% 3/4_THICKNESS_SEC1, 3/4_THICKNESS_SEC2, 3/4_THICKNESS_SEC3, 3/4_THICKNESS_SEC4, 3/4_THICKNESS_SEC5,
% AREA_SEC1, AREA_SEC2, AREA_SEC3, AREA_SEC4, AREA_SEC5,
% AOA_SEC1, AOA_SEC2, AOA_SEC3, AOA_SEC4, AOA_SEC5,
% CHORD_SEC1, CHORD_SEC2, CHORD_SEC3, CHORD_SEC4, CHORD_SEC5
%
% Available design variables
% HICKS_HENNE ( 1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc )
% COSINE_BUMP ( 2, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc, x_Size )
% SPHERICAL ( 3, Scale | Mark. List | ControlPoint_Index, Theta_Disp, R_Disp )
% NACA_4DIGITS ( 4, Scale | Mark. List | 1st digit, 2nd digit, 3rd and 4th digit )
% DISPLACEMENT ( 5, Scale | Mark. List | x_Disp, y_Disp, z_Disp )
% ROTATION ( 6, Scale | Mark. List | x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn )
% FFD_CONTROL_POINT ( 7, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Mov, y_Mov, z_Mov )
% FFD_DIHEDRAL_ANGLE ( 8, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% FFD_TWIST_ANGLE ( 9, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% FFD_ROTATION ( 10, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% FFD_CAMBER ( 11, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind )
% FFD_THICKNESS ( 12, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind )
% FOURIER ( 14, Scale | Mark. List | Lower(0)/Upper(1) side, index, cos(0)/sin(1) )
% FFD_CONTROL_POINT_2D ( 15, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, x_Mov, y_Mov )
% FFD_CAMBER_2D ( 16, Scale | Mark. List | FFD_BoxTag, i_Ind )
% FFD_THICKNESS_2D ( 17, Scale | Mark. List | FFD_BoxTag, i_Ind )
% FFD_CONTROL_SURFACE ( 18, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
%
% Optimization objective function with scaling factor
% ex= Objective * Scale
OPT_OBJECTIVE= DRAG * 0.001
%
% Optimization constraint functions with scaling factors, separated by semicolons
% ex= (Objective = Value ) * Scale, use '>','<','='
OPT_CONSTRAINT= ( LIFT > 0.328188 ) * 0.001; ( MOMENT_Z > 0.034068 ) * 0.001; ( MAX_THICKNESS > 0.11 ) * 0.001
%
% Maximum number of iterations
OPT_ITERATIONS= 100
%
% Requested accuracy
OPT_ACCURACY= 1E-6
%
% Upper bound for each design variable
OPT_BOUND_UPPER= 0.1
%
% Lower bound for each design variable
OPT_BOUND_LOWER= -0.1
%
% Optimization design variables, separated by semicolons
DEFINITION_DV= ( 1, 1.0 | airfoil | 0, 0.05 ); ( 1, 1.0 | airfoil | 0, 0.10 ); ( 1, 1.0 | airfoil | 0, 0.15 ); ( 1, 1.0 | airfoil | 0, 0.20 ); ( 1, 1.0 | airfoil | 0, 0.25 ); ( 1, 1.0 | airfoil | 0, 0.30 ); ( 1, 1.0 | airfoil | 0, 0.35 ); ( 1, 1.0 | airfoil | 0, 0.40 ); ( 1, 1.0 | airfoil | 0, 0.45 ); ( 1, 1.0 | airfoil | 0, 0.50 ); ( 1, 1.0 | airfoil | 0, 0.55 ); ( 1, 1.0 | airfoil | 0, 0.60 ); ( 1, 1.0 | airfoil | 0, 0.65 ); ( 1, 1.0 | airfoil | 0, 0.70 ); ( 1, 1.0 | airfoil | 0, 0.75 ); ( 1, 1.0 | airfoil | 0, 0.80 ); ( 1, 1.0 | airfoil | 0, 0.85 ); ( 1, 1.0 | airfoil | 0, 0.90 ); ( 1, 1.0 | airfoil | 0, 0.95 ); ( 1, 1.0 | airfoil | 1, 0.05 ); ( 1, 1.0 | airfoil | 1, 0.10 ); ( 1, 1.0 | airfoil | 1, 0.15 ); ( 1, 1.0 | airfoil | 1, 0.20 ); ( 1, 1.0 | airfoil | 1, 0.25 ); ( 1, 1.0 | airfoil | 1, 0.30 ); ( 1, 1.0 | airfoil | 1, 0.35 ); ( 1, 1.0 | airfoil | 1, 0.40 ); ( 1, 1.0 | airfoil | 1, 0.45 ); ( 1, 1.0 | airfoil | 1, 0.50 ); ( 1, 1.0 | airfoil | 1, 0.55 ); ( 1, 1.0 | airfoil | 1, 0.60 ); ( 1, 1.0 | airfoil | 1, 0.65 ); ( 1, 1.0 | airfoil | 1, 0.70 ); ( 1, 1.0 | airfoil | 1, 0.75 ); ( 1, 1.0 | airfoil | 1, 0.80 ); ( 1, 1.0 | airfoil | 1, 0.85 ); ( 1, 1.0 | airfoil | 1, 0.90 ); ( 1, 1.0 | airfoil | 1, 0.95 )