-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDPG.py
268 lines (213 loc) · 9.57 KB
/
DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
Environment is a 2D car.
Car has 5 sensors to obtain distance information.
Car collision => reward = -1, otherwise => reward = 0.
You can train this RL by using LOAD = False, after training, this model will be store in the a local folder.
Using LOAD = True to reload the trained model for playing.
You can customize this script in a way you want.
View more on [莫烦Python] : https://morvanzhou.github.io/tutorials/
Requirement:
pyglet >= 1.2.4
numpy >= 1.12.1
tensorflow >= 1.0.1
"""
import tensorflow as tf
import numpy as np
import os
import shutil
from car_env import CarEnv
np.random.seed(1)
tf.set_random_seed(1)
MAX_EPISODES = 500
MAX_EP_STEPS = 600
LR_A = 1e-4 # learning rate for actor
LR_C = 1e-4 # learning rate for critic
GAMMA = 0.9 # reward discount
REPLACE_ITER_A = 800
REPLACE_ITER_C = 700
MEMORY_CAPACITY = 2000
BATCH_SIZE = 16
VAR_MIN = 0.1
RENDER = True
LOAD = False
DISCRETE_ACTION = False
env = CarEnv(discrete_action=DISCRETE_ACTION)
STATE_DIM = env.state_dim
ACTION_DIM = env.action_dim
ACTION_BOUND = env.action_bound
# all placeholder for tf
with tf.name_scope('S'):
S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s')
with tf.name_scope('R'):
R = tf.placeholder(tf.float32, [None, 1], name='r')
with tf.name_scope('S_'):
S_ = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s_')
class Actor(object):
def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter):
self.sess = sess
self.a_dim = action_dim
self.action_bound = action_bound
self.lr = learning_rate
self.t_replace_iter = t_replace_iter
self.t_replace_counter = 0
with tf.variable_scope('Actor'):
# input s, output a
self.a = self._build_net(S, scope='eval_net', trainable=True)
# input s_, output a, get a_ for critic
self.a_ = self._build_net(S_, scope='target_net', trainable=False)
self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target_net')
def _build_net(self, s, scope, trainable):
with tf.variable_scope(scope):
init_w = tf.contrib.layers.xavier_initializer()
init_b = tf.constant_initializer(0.001)
net = tf.layers.dense(s, 100, activation=tf.nn.relu,
kernel_initializer=init_w, bias_initializer=init_b, name='l1',
trainable=trainable)
net = tf.layers.dense(net, 20, activation=tf.nn.relu,
kernel_initializer=init_w, bias_initializer=init_b, name='l2',
trainable=trainable)
with tf.variable_scope('a'):
actions = tf.layers.dense(net, self.a_dim, activation=tf.nn.tanh, kernel_initializer=init_w,
name='a', trainable=trainable)
scaled_a = tf.multiply(actions, self.action_bound, name='scaled_a') # Scale output to -action_bound to action_bound
return scaled_a
def learn(self, s): # batch update
self.sess.run(self.train_op, feed_dict={S: s})
if self.t_replace_counter % self.t_replace_iter == 0:
self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)])
self.t_replace_counter += 1
def choose_action(self, s):
s = s[np.newaxis, :] # single state
return self.sess.run(self.a, feed_dict={S: s})[0] # single action
def add_grad_to_graph(self, a_grads):
with tf.variable_scope('policy_grads'):
self.policy_grads = tf.gradients(ys=self.a, xs=self.e_params, grad_ys=a_grads)
with tf.variable_scope('A_train'):
opt = tf.train.RMSPropOptimizer(-self.lr) # (- learning rate) for ascent policy
self.train_op = opt.apply_gradients(zip(self.policy_grads, self.e_params))
class Critic(object):
def __init__(self, sess, state_dim, action_dim, learning_rate, gamma, t_replace_iter, a, a_):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.lr = learning_rate
self.gamma = gamma
self.t_replace_iter = t_replace_iter
self.t_replace_counter = 0
with tf.variable_scope('Critic'):
# Input (s, a), output q
self.a = a
self.q = self._build_net(S, self.a, 'eval_net', trainable=True)
# Input (s_, a_), output q_ for q_target
self.q_ = self._build_net(S_, a_, 'target_net', trainable=False) # target_q is based on a_ from Actor's target_net
self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net')
self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net')
with tf.variable_scope('target_q'):
self.target_q = R + self.gamma * self.q_
with tf.variable_scope('TD_error'):
self.loss = tf.reduce_mean(tf.squared_difference(self.target_q, self.q))
with tf.variable_scope('C_train'):
self.train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
with tf.variable_scope('a_grad'):
self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim)
def _build_net(self, s, a, scope, trainable):
with tf.variable_scope(scope):
init_w = tf.contrib.layers.xavier_initializer()
init_b = tf.constant_initializer(0.01)
with tf.variable_scope('l1'):
n_l1 = 100
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], initializer=init_w, trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], initializer=init_w, trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], initializer=init_b, trainable=trainable)
net = tf.nn.relu6(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net = tf.layers.dense(net, 20, activation=tf.nn.relu,
kernel_initializer=init_w, bias_initializer=init_b, name='l2',
trainable=trainable)
with tf.variable_scope('q'):
q = tf.layers.dense(net, 1, kernel_initializer=init_w, bias_initializer=init_b, trainable=trainable) # Q(s,a)
return q
def learn(self, s, a, r, s_):
self.sess.run(self.train_op, feed_dict={S: s, self.a: a, R: r, S_: s_})
if self.t_replace_counter % self.t_replace_iter == 0:
self.sess.run([tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)])
self.t_replace_counter += 1
class Memory(object):
def __init__(self, capacity, dims):
self.capacity = capacity
self.data = np.zeros((capacity, dims))
self.pointer = 0
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, [r], s_))
index = self.pointer % self.capacity # replace the old memory with new memory
self.data[index, :] = transition
self.pointer += 1
def sample(self, n):
assert self.pointer >= self.capacity, 'Memory has not been fulfilled'
indices = np.random.choice(self.capacity, size=n)
return self.data[indices, :]
sess = tf.Session()
# Create actor and critic.
actor = Actor(sess, ACTION_DIM, ACTION_BOUND[1], LR_A, REPLACE_ITER_A)
critic = Critic(sess, STATE_DIM, ACTION_DIM, LR_C, GAMMA, REPLACE_ITER_C, actor.a, actor.a_)
actor.add_grad_to_graph(critic.a_grads)
M = Memory(MEMORY_CAPACITY, dims=2 * STATE_DIM + ACTION_DIM + 1)
saver = tf.train.Saver()
path = './discrete' if DISCRETE_ACTION else './continuous'
if LOAD:
saver.restore(sess, tf.train.latest_checkpoint(path))
else:
sess.run(tf.global_variables_initializer())
def train():
var = 2. # control exploration
for ep in range(MAX_EPISODES):
s = env.reset()
ep_step = 0
for t in range(MAX_EP_STEPS):
# while True:
if RENDER:
env.render()
# Added exploration noise
a = actor.choose_action(s)
a = np.clip(np.random.normal(a, var), *ACTION_BOUND) # add randomness to action selection for exploration
s_, r, done = env.step(a)
M.store_transition(s, a, r, s_)
if M.pointer > MEMORY_CAPACITY:
var = max([var*.9995, VAR_MIN]) # decay the action randomness
b_M = M.sample(BATCH_SIZE)
b_s = b_M[:, :STATE_DIM]
b_a = b_M[:, STATE_DIM: STATE_DIM + ACTION_DIM]
b_r = b_M[:, -STATE_DIM - 1: -STATE_DIM]
b_s_ = b_M[:, -STATE_DIM:]
critic.learn(b_s, b_a, b_r, b_s_)
actor.learn(b_s)
s = s_
ep_step += 1
if done or t == MAX_EP_STEPS - 1:
# if done:
print('Ep:', ep,
'| Steps: %i' % int(ep_step),
'| Explore: %.2f' % var,
)
break
if os.path.isdir(path): shutil.rmtree(path)
os.mkdir(path)
ckpt_path = os.path.join(path, 'DDPG.ckpt')
save_path = saver.save(sess, ckpt_path, write_meta_graph=False)
print("\nSave Model %s\n" % save_path)
def eval():
env.set_fps(30)
while True:
s = env.reset()
while True:
env.render()
a = actor.choose_action(s)
s_, r, done = env.step(a)
s = s_
if done:
break
if __name__ == '__main__':
if LOAD:
eval()
else:
train()