This is a PyTorch implementation of the vector quantized variational autoencoder (https://arxiv.org/abs/1711.00937).
You can find the author's original implementation in Tensorflow here with an example you can run in a Jupyter notebook.
To install dependencies, create a conda or virtual environment with Python 3 and then run pip install -r requirements.txt
.
To run the VQ-VAE simply run python3 main.py
. Make sure to include the -save
flag if you want to save your model. You can also add parameters in the command line. The default values are specified below:
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--n_updates", type=int, default=5000)
parser.add_argument("--n_hiddens", type=int, default=128)
parser.add_argument("--n_residual_hiddens", type=int, default=32)
parser.add_argument("--n_residual_layers", type=int, default=2)
parser.add_argument("--embedding_dim", type=int, default=64)
parser.add_argument("--n_embeddings", type=int, default=512)
parser.add_argument("--beta", type=float, default=.25)
parser.add_argument("--learning_rate", type=float, default=3e-4)
parser.add_argument("--log_interval", type=int, default=50)
The VQ VAE has the following fundamental model components:
- An
Encoder
class which defines the mapx -> z_e
- A
VectorQuantizer
class which transform the encoder output into a discrete one-hot vector that is the index of the closest embedding vectorz_e -> z_q
- A
Decoder
class which defines the mapz_q -> x_hat
and reconstructs the original image
The Encoder / Decoder classes are convolutional and inverse convolutional stacks, which include Residual blocks in their architecture see ResNet paper. The residual models are defined by the ResidualLayer
and ResidualStack
classes.
These components are organized in the following folder structure:
models/
- decoder.py -> Decoder
- encoder.py -> Encoder
- quantizer.py -> VectorQuantizer
- residual.py -> ResidualLayer, ResidualStack
- vqvae.py -> VQVAE
To sample from the latent space, we fit a PixelCNN over the latent pixel values z_ij
. The trick here is recognizing that the VQ VAE maps an image to a latent space that has the same structure as a 1 channel image. For example, if you run the default VQ VAE parameters you'll RGB map images of shape (32,32,3)
to a latent space with shape (8,8,1)
, which is equivalent to an 8x8 grayscale image. Therefore, you can use a PixelCNN to fit a distribution over the "pixel" values of the 8x8 1-channel latent space.
To train the PixelCNN on latent representations, you first need to follow these steps:
- Train the VQ VAE on your dataset of choice
- Use saved VQ VAE parameters to encode your dataset and save discrete latent space representations with
np.save
API. In thequantizer.py
this is themin_encoding_indices
variable. - Specify path to your saved latent space dataset in
utils.load_latent_block
function. - Run the PixelCNN script
To run the PixelCNN, simply type
python pixelcnn/gated_pixelcnn.py
as well as any parameters (see the argparse statements). The default dataset is LATENT_BLOCK
which will only work if you have trained your VQ VAE and saved the latent representations.