-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsentiment_neural_network.py
88 lines (71 loc) · 3.84 KB
/
sentiment_neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import tensorflow as tf
from UnigramTfFeatureGeneration import create_feature_set_and_labels_simple
from UnigramTfifdFeaturesetGeneration import get_features
from sklearn.metrics import f1_score
#train_x,train_y,test_x,test_y = create_feature_set_and_labels_simple('pos_hindi.txt','neg_hindi.txt')
train_x,train_y,test_x,test_y = get_features('simple')
hidden_layer_1_nodes = 500 #nodes in hidden layer
hidden_layer_2_nodes = 500
hidden_layer_3_nodes = 500
output_classes = 2
batch_size = 100
print(len(train_x[0]))
# A placeholder promises to provide a value later unlike constant
x = tf.placeholder('float',[None,len(train_x[0])]) #28*28 pixels (if you doesn't specify 2nd argument tensorflow handle it for you)
y = tf.placeholder('float')
#constants are initialized with tf.constant and they never change, variables are initialized with
# tf.variable and they can change , they are trainable parameters.
layer_1 = {'weights':tf.Variable(tf.random_normal([len(train_x[0]),hidden_layer_1_nodes])),
'biases':tf.Variable(tf.random_normal([hidden_layer_1_nodes]))}
layer_2 = {'weights':tf.Variable(tf.random_normal([hidden_layer_1_nodes,hidden_layer_2_nodes])),
'biases':tf.Variable(tf.random_normal([hidden_layer_2_nodes]))}
layer_3 = {'weights':tf.Variable(tf.random_normal([hidden_layer_2_nodes,hidden_layer_3_nodes])),
'biases':tf.Variable(tf.random_normal([hidden_layer_3_nodes]))}
output_layer = {'weights':tf.Variable(tf.random_normal([hidden_layer_3_nodes,output_classes])),
'biases':tf.Variable(tf.random_normal([output_classes]))}
#saver = tf.train.Saver()
def neural_network_model(data):
#(input_data*weights)+bias
# model = (input_data*weights)+bias
l1 = tf.add(tf.matmul(data,layer_1['weights']), layer_1['biases'])
l1 = tf.nn.relu(l1) #kind of a activation function
l2 = tf.add(tf.matmul(l1,layer_2['weights']),layer_2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,layer_3['weights']),layer_3['biases'])
l3 = tf.nn.relu(l3)
output = tf.add(tf.matmul(l3,output_layer['weights']),output_layer['biases'])
return output
def train_neural_network(x):
prediction = neural_network_model(x)
#this is cost function which estimates how fare away we are from actual output
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
# now we want to minimize the cost using optimization function
# AdamOptimizer has one optional attribute learning_rate which is default to 0.001
optimizer = tf.train.AdamOptimizer().minimize(cost)
# epochs = feed_forward + back propagation
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i = 0
while(i<len(train_x)):
start = i
end = i+batch_size
epoch_x = train_x[start:end]
epoch_y = train_y[start:end]
#epoch_x, epoch_y = mnist.train.next_batch(batch_size)
#feed_dict argument provide values to the placeholders.
#sess.run will run enough computational graph to run the nodes/tensors inside it.
temp, c = sess.run([optimizer,cost], feed_dict={x:epoch_x,y:epoch_y})
epoch_loss += c
i += batch_size
print('Epoch ',epoch+1,'Completd out of ',hm_epochs,' loss: ',epoch_loss)
#saver.save(sess,"simpleneuralclassifier.ckpt")
# the above is whole training part
pred_y = []
pred_y.append(tf.cast(tf.argmax(prediction,1),'float'))
correct = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy: ',accuracy.eval({x:test_x,y:test_y})*100,"%")
train_neural_network(x)