-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnmt_model.py
386 lines (295 loc) · 18.6 KB
/
nmt_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from collections import namedtuple
import sys
from typing import List, Tuple, Dict, Set, Union
import torch
import torch.nn as nn
import torch.nn.utils
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
from model_embeddings import ModelEmbeddings
Hypothesis = namedtuple('Hypothesis', ['value', 'score'])
class NMT(nn.Module):
""" Simple Neural Machine Translation Model:
- Bidrectional LSTM Encoder
- Unidirection LSTM Decoder
- Global Attention Model (Luong, et al. 2015)
"""
def __init__(self, embed_size, hidden_size, vocab, dropout_rate=0.2):
""" Init NMT Model.
@param embed_size (int): Embedding size (dimensionality)
@param hidden_size (int): Hidden Size, the size of hidden states (dimensionality)
@param vocab (Vocab): Vocabulary object containing src and tgt languages
See vocab.py for documentation.
@param dropout_rate (float): Dropout probability, for attention
"""
super(NMT, self).__init__()
self.model_embeddings = ModelEmbeddings(embed_size, vocab)
self.hidden_size = hidden_size
self.dropout_rate = dropout_rate
self.vocab = vocab
# default values
self.encoder = None
self.decoder = None
self.h_projection = None
self.c_projection = None
self.att_projection = None
self.combined_output_projection = None
self.target_vocab_projection = None
self.dropout = None
# For sanity check only, not relevant to implementation
self.gen_sanity_check = False
self.counter = 0
self.post_embed_cnn = nn.Conv1d(in_channels=embed_size, out_channels=embed_size, kernel_size=2, padding=1)
self.encoder = nn.LSTM(input_size=embed_size, hidden_size=hidden_size, bidirectional=True)
self.decoder = nn.LSTMCell(input_size=embed_size + hidden_size, hidden_size=hidden_size)
self.h_projection = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size, bias=False)
self.c_projection = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size, bias=False)
self.att_projection = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size, bias=False)
self.combined_output_projection = nn.Linear(in_features=3 * hidden_size, out_features=hidden_size, bias=False)
self.target_vocab_projection = nn.Linear(in_features=hidden_size, out_features=len(vocab.tgt), bias=False)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, source: List[List[str]], target: List[List[str]]) -> torch.Tensor:
""" Take a mini-batch of source and target sentences, compute the log-likelihood of
target sentences under the language models learned by the NMT system.
@param source (List[List[str]]): list of source sentence tokens
@param target (List[List[str]]): list of target sentence tokens, wrapped by `<s>` and `</s>`
@returns scores (Tensor): a variable/tensor of shape (b, ) representing the
log-likelihood of generating the gold-standard target sentence for
each example in the input batch. Here b = batch size.
"""
# Compute sentence lengths
source_lengths = [len(s) for s in source]
# Convert list of lists into tensors
source_padded = self.vocab.src.to_input_tensor(source, device=self.device) # Tensor: (src_len, b)
target_padded = self.vocab.tgt.to_input_tensor(target, device=self.device) # Tensor: (tgt_len, b)
### Run the network forward:
### 1. Apply the encoder to `source_padded` by calling `self.encode()`
### 2. Generate sentence masks for `source_padded` by calling `self.generate_sent_masks()`
### 3. Apply the decoder to compute combined-output by calling `self.decode()`
### 4. Compute log probability distribution over the target vocabulary using the
### combined_outputs returned by the `self.decode()` function.
enc_hiddens, dec_init_state = self.encode(source_padded, source_lengths)
enc_masks = self.generate_sent_masks(enc_hiddens, source_lengths)
combined_outputs = self.decode(enc_hiddens, enc_masks, dec_init_state, target_padded)
P = F.log_softmax(self.target_vocab_projection(combined_outputs), dim=-1)
# Zero out, probabilities for which we have nothing in the target text
target_masks = (target_padded != self.vocab.tgt['<pad>']).float()
# Compute log probability of generating true target words
target_gold_words_log_prob = torch.gather(P, index=target_padded[1:].unsqueeze(-1), dim=-1).squeeze(
-1) * target_masks[1:]
scores = target_gold_words_log_prob.sum(dim=0)
return scores
def encode(self, source_padded: torch.Tensor, source_lengths: List[int]) -> Tuple[
torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
""" Apply the encoder to source sentences to obtain encoder hidden states.
Additionally, take the final states of the encoder and project them to obtain initial states for decoder.
@param source_padded (Tensor): Tensor of padded source sentences with shape (src_len, b), where
b = batch_size, src_len = maximum source sentence length. Note that
these have already been sorted in order of longest to shortest sentence.
@param source_lengths (List[int]): List of actual lengths for each of the source sentences in the batch
@returns enc_hiddens (Tensor): Tensor of hidden units with shape (b, src_len, h*2), where
b = batch size, src_len = maximum source sentence length, h = hidden size.
@returns dec_init_state (tuple(Tensor, Tensor)): Tuple of tensors representing the decoder's initial
hidden state and cell. Both tensors should have shape (2, b, h).
"""
enc_hiddens, dec_init_state = None, None
# Step 1: Construct Tensor `X` of source sentences
X = self.model_embeddings.source(source_padded)
# Step 2: Apply the post_embed_cnn layer
X = X.permute(1, 2, 0)
X = self.post_embed_cnn(X)
X = X.permute(2, 0, 1)
# Step 3: Compute `enc_hiddens`, `last_hidden`, `last_cell`
X = nn.utils.rnn.pack_padded_sequence(X, source_lengths)
enc_hiddens, (last_hidden, last_cell) = self.encoder(X)
enc_hiddens, _ = nn.utils.rnn.pad_packed_sequence(enc_hiddens)
enc_hiddens = enc_hiddens.permute(1, 0, 2)
# Step 4: Compute `dec_init_state`
init_decoder_hidden = torch.cat((last_hidden[0], last_hidden[1]), dim=1)
init_decoder_hidden = self.h_projection(init_decoder_hidden)
init_decoder_cell = torch.cat((last_cell[0], last_cell[1]), dim=1)
init_decoder_cell = self.c_projection(init_decoder_cell)
dec_init_state = (init_decoder_hidden, init_decoder_cell)
return enc_hiddens, dec_init_state
def decode(self, enc_hiddens: torch.Tensor, enc_masks: torch.Tensor,
dec_init_state: Tuple[torch.Tensor, torch.Tensor], target_padded: torch.Tensor) -> torch.Tensor:
"""Compute combined output vectors for a batch.
@param enc_hiddens (Tensor): Hidden states (b, src_len, h*2), where
b = batch size, src_len = maximum source sentence length, h = hidden size.
@param enc_masks (Tensor): Tensor of sentence masks (b, src_len), where
b = batch size, src_len = maximum source sentence length.
@param dec_init_state (tuple(Tensor, Tensor)): Initial state and cell for decoder
@param target_padded (Tensor): Gold-standard padded target sentences (tgt_len, b), where
tgt_len = maximum target sentence length, b = batch size.
@returns combined_outputs (Tensor): combined output tensor (tgt_len, b, h), where
tgt_len = maximum target sentence length, b = batch_size, h = hidden size
"""
# Chop off the <END> token for max length sentences.
target_padded = target_padded[:-1]
# Initialize the decoder state (hidden and cell)
dec_state = dec_init_state
# Initialize previous combined output vector o_{t-1} as zero
batch_size = enc_hiddens.size(0)
o_prev = torch.zeros(batch_size, self.hidden_size, device=self.device)
# Initialize a list we will use to collect the combined output o_t on each step
combined_outputs = []
enc_hiddens_proj = self.att_projection(enc_hiddens)
# Step 2: Construct tensor `Y` of target sentences
Y = self.model_embeddings.target(target_padded)
# Step 3: Use the torch.split function to iterate over the time dimension of Y
for Y_t in torch.split(Y, split_size_or_sections=1):
Y_t = torch.squeeze(Y_t, dim=0)
Ybar_t = torch.cat([Y_t, o_prev], dim=-1)
dec_state, o_t, _ = self.step(Ybar_t, dec_state, enc_hiddens, enc_hiddens_proj, enc_masks)
combined_outputs.append(o_t)
o_prev = o_t
# Step 4: Use torch.stack to convert combined_outputs to a single tensor
combined_outputs = torch.stack(combined_outputs)
return combined_outputs
def step(self, Ybar_t: torch.Tensor,
dec_state: Tuple[torch.Tensor, torch.Tensor],
enc_hiddens: torch.Tensor,
enc_hiddens_proj: torch.Tensor,
enc_masks: torch.Tensor) -> Tuple[Tuple, torch.Tensor, torch.Tensor]:
""" Compute one forward step of the LSTM decoder, including the attention computation.
@param Ybar_t (Tensor): Concatenated Tensor of [Y_t o_prev], with shape (b, e + h). The input for the decoder,
where b = batch size, e = embedding size, h = hidden size.
@param dec_state (tuple(Tensor, Tensor)): Tuple of tensors both with shape (b, h), where b = batch size, h = hidden size.
First tensor is decoder's prev hidden state, second tensor is decoder's prev cell.
@param enc_hiddens (Tensor): Encoder hidden states Tensor, with shape (b, src_len, h * 2), where b = batch size,
src_len = maximum source length, h = hidden size.
@param enc_hiddens_proj (Tensor): Encoder hidden states Tensor, projected from (h * 2) to h. Tensor is with shape (b, src_len, h),
where b = batch size, src_len = maximum source length, h = hidden size.
@param enc_masks (Tensor): Tensor of sentence masks shape (b, src_len),
where b = batch size, src_len is maximum source length.
@returns dec_state (tuple (Tensor, Tensor)): Tuple of tensors both shape (b, h), where b = batch size, h = hidden size.
First tensor is decoder's new hidden state, second tensor is decoder's new cell.
@returns combined_output (Tensor): Combined output Tensor at timestep t, shape (b, h), where b = batch size, h = hidden size.
@returns e_t (Tensor): Tensor of shape (b, src_len). It is attention scores distribution.
Note: You will not use this outside of this function.
We are simply returning this value so that we can sanity check
your implementation.
"""
combined_output = None
dec_state = self.decoder(Ybar_t, dec_state)
dec_hidden, dec_cell = dec_state
e_t = torch.bmm(enc_hiddens_proj, dec_hidden.unsqueeze(2)).squeeze(2)
if enc_masks is not None:
e_t.data.masked_fill_(enc_masks.bool(), -float('inf'))
alpha_t = F.softmax(e_t, dim=1)
a_t = torch.bmm(alpha_t.unsqueeze(1), enc_hiddens).squeeze(1)
U_t = torch.cat([a_t, dec_hidden], dim=1)
V_t = self.combined_output_projection(U_t)
O_t = self.dropout(torch.tanh(V_t))
combined_output = O_t
return dec_state, combined_output, e_t
def generate_sent_masks(self, enc_hiddens: torch.Tensor, source_lengths: List[int]) -> torch.Tensor:
""" Generate sentence masks for encoder hidden states.
@param enc_hiddens (Tensor): encodings of shape (b, src_len, 2*h), where b = batch size,
src_len = max source length, h = hidden size.
@param source_lengths (List[int]): List of actual lengths for each of the sentences in the batch.
@returns enc_masks (Tensor): Tensor of sentence masks of shape (b, src_len),
where src_len = max source length, h = hidden size.
"""
enc_masks = torch.zeros(enc_hiddens.size(0), enc_hiddens.size(1), dtype=torch.float)
for e_id, src_len in enumerate(source_lengths):
enc_masks[e_id, src_len:] = 1
return enc_masks.to(self.device)
def beam_search(self, src_sent: List[str], beam_size: int = 5, max_decoding_time_step: int = 70) -> List[
Hypothesis]:
""" Given a single source sentence, perform beam search, yielding translations in the target language.
@param src_sent (List[str]): a single source sentence (words)
@param beam_size (int): beam size
@param max_decoding_time_step (int): maximum number of time steps to unroll the decoding RNN
@returns hypotheses (List[Hypothesis]): a list of hypothesis, each hypothesis has two fields:
value: List[str]: the decoded target sentence, represented as a list of words
score: float: the log-likelihood of the target sentence
"""
src_sents_var = self.vocab.src.to_input_tensor([src_sent], self.device)
src_encodings, dec_init_vec = self.encode(src_sents_var, [len(src_sent)])
src_encodings_att_linear = self.att_projection(src_encodings)
h_tm1 = dec_init_vec
att_tm1 = torch.zeros(1, self.hidden_size, device=self.device)
eos_id = self.vocab.tgt['</s>']
hypotheses = [['<s>']]
hyp_scores = torch.zeros(len(hypotheses), dtype=torch.float, device=self.device)
completed_hypotheses = []
t = 0
while len(completed_hypotheses) < beam_size and t < max_decoding_time_step:
t += 1
hyp_num = len(hypotheses)
exp_src_encodings = src_encodings.expand(hyp_num,
src_encodings.size(1),
src_encodings.size(2))
exp_src_encodings_att_linear = src_encodings_att_linear.expand(hyp_num,
src_encodings_att_linear.size(1),
src_encodings_att_linear.size(2))
y_tm1 = torch.tensor([self.vocab.tgt[hyp[-1]] for hyp in hypotheses], dtype=torch.long, device=self.device)
y_t_embed = self.model_embeddings.target(y_tm1)
x = torch.cat([y_t_embed, att_tm1], dim=-1)
(h_t, cell_t), att_t, _ = self.step(x, h_tm1,
exp_src_encodings, exp_src_encodings_att_linear, enc_masks=None)
# log probabilities over target words
log_p_t = F.log_softmax(self.target_vocab_projection(att_t), dim=-1)
live_hyp_num = beam_size - len(completed_hypotheses)
contiuating_hyp_scores = (hyp_scores.unsqueeze(1).expand_as(log_p_t) + log_p_t).view(-1)
top_cand_hyp_scores, top_cand_hyp_pos = torch.topk(contiuating_hyp_scores, k=live_hyp_num)
prev_hyp_ids = torch.div(top_cand_hyp_pos, len(self.vocab.tgt), rounding_mode='floor')
hyp_word_ids = top_cand_hyp_pos % len(self.vocab.tgt)
new_hypotheses = []
live_hyp_ids = []
new_hyp_scores = []
for prev_hyp_id, hyp_word_id, cand_new_hyp_score in zip(prev_hyp_ids, hyp_word_ids, top_cand_hyp_scores):
prev_hyp_id = prev_hyp_id.item()
hyp_word_id = hyp_word_id.item()
cand_new_hyp_score = cand_new_hyp_score.item()
hyp_word = self.vocab.tgt.id2word[hyp_word_id]
new_hyp_sent = hypotheses[prev_hyp_id] + [hyp_word]
if hyp_word == '</s>':
completed_hypotheses.append(Hypothesis(value=new_hyp_sent[1:-1],
score=cand_new_hyp_score))
else:
new_hypotheses.append(new_hyp_sent)
live_hyp_ids.append(prev_hyp_id)
new_hyp_scores.append(cand_new_hyp_score)
if len(completed_hypotheses) == beam_size:
break
live_hyp_ids = torch.tensor(live_hyp_ids, dtype=torch.long, device=self.device)
h_tm1 = (h_t[live_hyp_ids], cell_t[live_hyp_ids])
att_tm1 = att_t[live_hyp_ids]
hypotheses = new_hypotheses
hyp_scores = torch.tensor(new_hyp_scores, dtype=torch.float, device=self.device)
if len(completed_hypotheses) == 0:
completed_hypotheses.append(Hypothesis(value=hypotheses[0][1:],
score=hyp_scores[0].item()))
completed_hypotheses.sort(key=lambda hyp: hyp.score, reverse=True)
return completed_hypotheses
@property
def device(self) -> torch.device:
""" Determine which device to place the Tensors upon, CPU or GPU.
"""
return self.model_embeddings.source.weight.device
@staticmethod
def load(model_path: str):
""" Load the model from a file.
@param model_path (str): path to model
"""
params = torch.load(model_path, map_location=lambda storage, loc: storage)
args = params['args']
model = NMT(vocab=params['vocab'], **args)
model.load_state_dict(params['state_dict'])
return model
def save(self, path: str):
""" Save the odel to a file.
@param path (str): path to the model
"""
print('save model parameters to [%s]' % path, file=sys.stderr)
params = {
'args': dict(embed_size=self.model_embeddings.embed_size, hidden_size=self.hidden_size,
dropout_rate=self.dropout_rate),
'vocab': self.vocab,
'state_dict': self.state_dict()
}
torch.save(params, path)