-
Notifications
You must be signed in to change notification settings - Fork 121
/
kidney.py
75 lines (53 loc) · 2.25 KB
/
kidney.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
import numpy as np
#import matplotlib.pyplot as plt
#import seaborn as sns
#import warnings
#warnings.filterwarnings("ignore", category=DeprecationWarning)
from sklearn.preprocessing import StandardScaler
import warnings
import random
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_validate
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
df=pd.read_csv("kidney_disease.csv")
df[['htn','dm','cad','pe','ane']] = df[['htn','dm','cad','pe','ane']].replace(to_replace={'yes':1,'no':0})
df[['rbc','pc']] = df[['rbc','pc']].replace(to_replace={'abnormal':1,'normal':0})
df[['pcc','ba']] = df[['pcc','ba']].replace(to_replace={'present':1,'notpresent':0})
df[['appet']] = df[['appet']].replace(to_replace={'good':1,'poor':0,'no':np.nan})
df['classification'] = df['classification'].replace(to_replace={'ckd':1.0,'ckd\t':1.0,'notckd':0.0,'no':0.0})
df.rename(columns={'classification':'class'},inplace=True)
# Further cleaning
df['pe'] = df['pe'].replace(to_replace='good',value=0) # Not having pedal edema is good
df['appet'] = df['appet'].replace(to_replace='no',value=0)
df['cad'] = df['cad'].replace(to_replace='\tno',value=0)
df['dm'] = df['dm'].replace(to_replace={'\tno':0,'\tyes':1,' yes':1, '':np.nan})
df.drop('id',axis=1,inplace=True)
df=df.drop(["su","rbc","rc","wc","pot","sod"],axis=1)
df["pcv"]=df["pcv"].fillna(method="ffill")
df.drop(["pc"],axis=1,inplace=True)
df["hemo"]=df["hemo"].fillna(method="ffill")
df.drop(["sg"],axis=1,inplace=True)
df=df.fillna(method="ffill")
#df.drop(["pcc"],axis=1,inplace=True)
df.drop(["ba"],axis=1,inplace=True)
df.drop(["pe"],axis=1,inplace=True)
df.drop(["cad"],axis=1,inplace=True)
df.drop(["ane"],axis=1,inplace=True)
#df.drop(["dm"],axis=1,inplace=True)
df=df.replace("\t?",31)
print(df.columns)
print(df.shape[1])
target=df["class"]
source=df.drop(["class"],axis=1)
X_train,X_test,y_train,y_test=train_test_split(source,target,test_size=0.05)
sm=SMOTE()
X_train, y_train =sm.fit_sample(X_train,y_train)
lr=LogisticRegression()
lr.fit(X_train,y_train)
a11=cross_validate(lr,source,target, cv=10)
print(a11)
joblib.dump(lr,"model3")