-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperturbation.py
313 lines (271 loc) · 13.3 KB
/
perturbation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from lxmert.lxmert.src.tasks import vqa_data
from lxmert.lxmert.src.modeling_frcnn import GeneralizedRCNN
import lxmert.lxmert.src.vqa_utils as utils
from lxmert.lxmert.src.processing_image import Preprocess
from transformers import LxmertTokenizer
from lxmert.lxmert.src.huggingface_lxmert import LxmertForQuestionAnswering
from lxmert.lxmert.src.lxmert_lrp import LxmertForQuestionAnswering as LxmertForQuestionAnsweringLRP
from tqdm import tqdm
from lxmert.lxmert.src.ExplanationGenerator import GeneratorBaselines, GeneratorRMAblationNoAggregation
from lxmert.lxmert.src.param import args
# from src.tasks import vqa_data
# from src.modeling_frcnn import GeneralizedRCNN
# import src.vqa_utils as utils
# from src.processing_image import Preprocess
# from transformers import LxmertTokenizer
# from src.huggingface_lxmert import LxmertForQuestionAnswering
# from src.lxmert_lrp import LxmertForQuestionAnswering as LxmertForQuestionAnsweringLRP
# from tqdm import tqdm
# from src.ExplanationGenerator import GeneratorBaselines, GeneratorRMAblationNoAggregation
from spectral.ExplanationGeneratorOurs import GeneratorOurs
from lxmert.lxmert.src.param import args
import random
# import os
import gc
import torch
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
OBJ_URL = "https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/objects_vocab.txt"
ATTR_URL = "https://raw.githubusercontent.com/airsplay/py-bottom-up-attention/master/demo/data/genome/1600-400-20/attributes_vocab.txt"
VQA_URL = "https://raw.githubusercontent.com/airsplay/lxmert/master/data/vqa/trainval_label2ans.json"
# VQA_URL = "../../data/vqa/trainval_label2ans.json"
class ModelPert:
def __init__(self, COCO_val_path, use_lrp=False):
self.COCO_VAL_PATH = COCO_val_path
self.vqa_answers = utils.get_data(VQA_URL)
# load models and model components
self.frcnn_cfg = utils.Config.from_pretrained("unc-nlp/frcnn-vg-finetuned")
self.frcnn_cfg.MODEL.DEVICE = "cuda"
self.frcnn = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.frcnn_cfg)
self.image_preprocess = Preprocess(self.frcnn_cfg)
self.lxmert_tokenizer = LxmertTokenizer.from_pretrained("unc-nlp/lxmert-base-uncased")
if use_lrp:
self.lxmert_vqa = LxmertForQuestionAnsweringLRP.from_pretrained("unc-nlp/lxmert-vqa-uncased").to("cuda")
else:
self.lxmert_vqa = LxmertForQuestionAnswering.from_pretrained("unc-nlp/lxmert-vqa-uncased").to("cuda")
self.lxmert_vqa.eval()
self.model = self.lxmert_vqa
self.vqa_dataset = vqa_data.VQADataset(splits="valid")
self.pert_steps = [0, 0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
self.pert_acc = [0] * len(self.pert_steps)
def forward(self, item):
image_file_path = self.COCO_VAL_PATH + item['img_id'] + '.jpg'
self.image_file_path = image_file_path
self.image_id = item['img_id']
# run frcnn
images, sizes, scales_yx = self.image_preprocess(image_file_path)
output_dict = self.frcnn(
images,
sizes,
scales_yx=scales_yx,
padding="max_detections",
max_detections= self.frcnn_cfg.max_detections,
return_tensors="pt"
)
inputs = self.lxmert_tokenizer(
item['sent'],
truncation=True,
return_token_type_ids=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt"
)
self.question_tokens = self.lxmert_tokenizer.convert_ids_to_tokens(inputs.input_ids.flatten())
self.text_len = len(self.question_tokens)
# Very important that the boxes are normalized
normalized_boxes = output_dict.get("normalized_boxes")
features = output_dict.get("roi_features")
self.image_boxes_len = features.shape[1]
# print(f"Image boxes len: {self.image_boxes_len}")
self.bboxes = output_dict.get("boxes")
self.output = self.lxmert_vqa(
input_ids=inputs.input_ids.to("cuda"),
attention_mask=inputs.attention_mask.to("cuda"),
visual_feats=features.to("cuda"),
visual_pos=normalized_boxes.to("cuda"),
token_type_ids=inputs.token_type_ids.to("cuda"),
return_dict=True,
output_attentions=False,
)
return self.output
def perturbation_image(self, item, cam_image, cam_text, is_positive_pert=False):
if is_positive_pert:
cam_image = cam_image * (-1)
image_file_path = self.COCO_VAL_PATH + item['img_id'] + '.jpg'
# run frcnn
images, sizes, scales_yx = self.image_preprocess(image_file_path)
output_dict = self.frcnn(
images,
sizes,
scales_yx=scales_yx,
padding="max_detections",
max_detections=self.frcnn_cfg.max_detections,
return_tensors="pt"
)
inputs = self.lxmert_tokenizer(
item['sent'],
truncation=True,
return_token_type_ids=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt"
)
# Very important that the boxes are normalized
normalized_boxes = output_dict.get("normalized_boxes")
features = output_dict.get("roi_features")
for step_idx, step in enumerate(self.pert_steps):
# find top step boxes
curr_num_boxes = int((1 - step) * self.image_boxes_len)
_, top_bboxes_indices = cam_image.topk(k=curr_num_boxes, dim=-1)
top_bboxes_indices = top_bboxes_indices.cpu().data.numpy()
curr_features = features[:, top_bboxes_indices, :]
# print(f"Curr feats shape: {curr_features.shape}")
curr_pos = normalized_boxes[:, top_bboxes_indices, :]
output = self.lxmert_vqa(
input_ids=inputs.input_ids.to("cuda"),
attention_mask=inputs.attention_mask.to("cuda"),
visual_feats=curr_features.to("cuda"),
visual_pos=curr_pos.to("cuda"),
token_type_ids=inputs.token_type_ids.to("cuda"),
return_dict=True,
output_attentions=False,
)
answer = self.vqa_answers[output.question_answering_score.argmax()]
accuracy = item["label"].get(answer, 0)
self.pert_acc[step_idx] += accuracy
return self.pert_acc
def perturbation_text(self, item, cam_image, cam_text, is_positive_pert=False):
if is_positive_pert:
cam_text = cam_text * (-1)
image_file_path = self.COCO_VAL_PATH + item['img_id'] + '.jpg'
# run frcnn
images, sizes, scales_yx = self.image_preprocess(image_file_path)
output_dict = self.frcnn(
images,
sizes,
scales_yx=scales_yx,
padding="max_detections",
max_detections=self.frcnn_cfg.max_detections,
return_tensors="pt"
)
inputs = self.lxmert_tokenizer(
item['sent'],
truncation=True,
return_token_type_ids=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt"
)
# print(f"Item sent: {item['sent']}")
# Very important that the boxes are normalized
normalized_boxes = output_dict.get("normalized_boxes")
features = output_dict.get("roi_features")
for step_idx, step in enumerate(self.pert_steps):
# we must keep the [CLS] token in order to have the classification
# we also keep the [SEP] token
cam_pure_text = cam_text[1:-1]
text_len = cam_pure_text.shape[0]
# find top step tokens, without the [CLS] token and the [SEP] token
curr_num_tokens = int((1 - step) * text_len)
_, top_bboxes_indices = cam_pure_text.topk(k=curr_num_tokens, dim=-1)
top_bboxes_indices = top_bboxes_indices.cpu().data.numpy()
# add back [CLS], [SEP] tokens
top_bboxes_indices = [0, cam_text.shape[0] - 1] +\
[top_bboxes_indices[i] + 1 for i in range(len(top_bboxes_indices))]
# text tokens must be sorted for positional embedding to work
top_bboxes_indices = sorted(top_bboxes_indices)
# print(f"{top_bboxes_indices}")
# for id_idx in range(text_len + 2):
# if id_idx not in top_bboxes_indices:
# inputs.input_ids[:, id_idx] = 103
# inputs.attention_mask[:, id_idx] = 0
curr_input_ids = inputs.input_ids[:, top_bboxes_indices]
curr_attention_mask = inputs.attention_mask[:, top_bboxes_indices]
curr_token_ids = inputs.token_type_ids[:, top_bboxes_indices]
# curr_input_ids = inputs.input_ids
# curr_attention_mask = inputs.attention_mask
# curr_token_ids = inputs.token_type_ids
output = self.lxmert_vqa(
input_ids=curr_input_ids.to("cuda"),
attention_mask=curr_attention_mask.to("cuda"),
visual_feats=features.to("cuda"),
visual_pos=normalized_boxes.to("cuda"),
token_type_ids=curr_token_ids.to("cuda"),
return_dict=True,
output_attentions=False,
)
answer = self.vqa_answers[output.question_answering_score.argmax()]
accuracy = item["label"].get(answer, 0)
self.pert_acc[step_idx] += accuracy
return self.pert_acc
def main(args):
model_pert = ModelPert(args.COCO_path, use_lrp=True)
ours = GeneratorOurs(model_pert)
baselines = GeneratorBaselines(model_pert)
oursNoAggAblation = GeneratorRMAblationNoAggregation(model_pert)
vqa_dataset = vqa_data.VQADataset(splits="valid")
vqa_answers = utils.get_data(VQA_URL)
method_name = args.method
items = vqa_dataset.data
random.seed(1234)
r = list(range(len(items)))
random.shuffle(r)
pert_samples_indices = r[:args.num_samples]
iterator = tqdm([vqa_dataset.data[i] for i in pert_samples_indices])
test_type = "positive" if args.is_positive_pert else "negative"
# print("hellooooo")
# print(args.is_text_pert)
modality = "text" if args.is_text_pert else "image"
print("running {0} pert test for {1} modality with method {2}".format(test_type, modality, args.method))
for index, item in enumerate(iterator):
if method_name == 'transformer_att':
R_t_t, R_t_i = baselines.generate_transformer_attr(item)
elif method_name == 'attn_gradcam':
R_t_t, R_t_i = baselines.generate_attn_gradcam(item)
elif method_name == 'partial_lrp':
R_t_t, R_t_i = baselines.generate_partial_lrp(item)
elif method_name == 'raw_attn':
R_t_t, R_t_i = baselines.generate_raw_attn(item)
elif method_name == 'rollout':
R_t_t, R_t_i = baselines.generate_rollout(item)
elif method_name == "rm_with_lrp_no_normalization":
R_t_t, R_t_i = baselines.generate_relevance_maps(item, normalize_self_attention=False)
elif method_name == "rm_no_lrp":
R_t_t, R_t_i = baselines.generate_relevance_maps(item, use_lrp=False)
elif method_name == "rm_no_lrp_no_norm":
R_t_t, R_t_i = baselines.generate_relevance_maps(item, use_lrp=False, normalize_self_attention=False)
elif method_name == "rm_with_lrp":
R_t_t, R_t_i = baselines.generate_relevance_maps(item, use_lrp=True)
elif method_name == "ablation_no_self_in_10":
R_t_t, R_t_i = baselines.generate_relevance_maps(item, use_lrp=False, apply_self_in_rule_10=False)
elif method_name == "ablation_no_aggregation":
R_t_t, R_t_i = oursNoAggAblation.generate_relevance_maps_no_agg(item, use_lrp=False, normalize_self_attention=False)
elif method_name == "dsm":
R_t_t, R_t_i = ours.generate_ours_dsm(item)
elif method_name == "dsm_grad":
R_t_t, R_t_i = ours.generate_ours_dsm_grad(item)
elif method_name == "dsm_grad_cam":
R_t_t, R_t_i = ours.generate_ours_dsm_grad_cam(item)
else:
print("Please enter a valid method name")
return
# if method_name == 'dsm' or method_name == 'dsm_grad_cam' or method_name == 'dsm_grad':
# cam_image = R_t_i
# cam_text = R_t_t
# else:
cam_image = R_t_i[0]
cam_text = R_t_t[0]
cam_image = (cam_image - cam_image.min()) / (cam_image.max() - cam_image.min())
cam_text = (cam_text - cam_text.min()) / (cam_text.max() - cam_text.min())
if args.is_text_pert:
curr_pert_result = model_pert.perturbation_text(item, cam_image, cam_text, args.is_positive_pert)
else:
curr_pert_result = model_pert.perturbation_image(item, cam_image, cam_text, args.is_positive_pert)
curr_pert_result = [round(res / (index+1) * 100, 2) for res in curr_pert_result]
iterator.set_description("Acc: {}".format(curr_pert_result))
del R_t_t, R_t_i
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
# print(args)
main(args)
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = ""