Skip to content

Latest commit

 

History

History
65 lines (49 loc) · 1.74 KB

README.md

File metadata and controls

65 lines (49 loc) · 1.74 KB

EGFM-Python

Empirical Green's Function Method to synthesis strong ground motion complete in Python

Emprical Green's Function Method

EGFM by Python

  • Why ? Easy to Modify and Visualize

Codes

egfm.py

  • IO: readTH
  • Data fromat transfer: zoo2th (CSMNC2TH, CSMNC2SAC)
  • Vectorize to quickly run: calWeight
  • Filter and FFT by numpy

egfm_pc.py

  1. Initialize variables;
  2. Read parameters from input file;
  3. Read time histories of main and after shocks;
  4. Process time histories: input -> rmean-> integrate -> bandpass filter -> rmean -> output;
  5. Calculate factor for propagation correction, function: calRdn;
  6. Calculate weight for superpose in time domain and synthetize (calWeight, synt);
  7. Rmean and visualize

Example

One component in Miyake, 2003, BSSA

  • Main Schock: 1997 March, Kagoshima-ken Hokuseibu $M_{JMA}$ 6.5
  • Station: K-NET, KGS002
  • After Schock: 1997 March, Kagoshima-ken Hokuseibu $M_{JMA}$ 4.7

Table Parameters of main and after shocks


Date(JST) Latitude (deg) Longitude (deg) Depth (km) $M_{JMA}$
1997/03/26 17:31 31.970N 130.380E 8.2 6.5
1997/03/26 17:39 31.968N 130.362E 11.1 4.7

Fig. Amplitude spectra of mainshock and synthetic ground motions

cd ./example

Run follow script in jupyter notebook

from egfm import *
zoo2th('mainShock.zoo', 'mainTH.txt')
zoo2th('afterShock.zoo', 'egfTH.txt')
%run egfm_pc.py

(enter input file name) 1997KKH.txt

Fig. The timehistories of mainshock, aftershock and synthetic ground motions