forked from INM-6/human-multi-area-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Snakefile
82 lines (70 loc) · 2.32 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import json
configfile: 'config.yaml'
# Read in all .py files in 'experiments' as EXPERIMENTS
EXPERIMENTS = []
for f in os.listdir('experiments'):
fn, ext = os.path.splitext(f)
if ext == '.py':
EXPERIMENTS.append(fn)
if 'BASE_PATH' in config:
BASE_PATH = config['BASE_PATH']
else:
BASE_PATH = os.getcwd()
NEST_VARS_PATH = os.path.join(config['NEST_PATH'], 'bin', 'nest_vars.sh')
with open('cluster.json', 'r') as f:
THREADS_SIMULATE = json.load(f)['simulateNetwork']['cpus-per-task']
# Load necessary modules for MPI and NEST before executing
RUN_CREATE = 'python'
if 'MPI_MODULES' in config:
RUN_CREATE = '{}; {}'.format(config['MPI_MODULES'], RUN_CREATE)
RUN_SIMULATE = 'python'
if 'MPIRUN' in config:
RUN_SIMULATE = '{} {}'.format(config['MPIRUN'], RUN_SIMULATE)
RUN_SIMULATE = 'source {}; {}'.format(NEST_VARS_PATH, RUN_SIMULATE)
if 'MPI_MODULES' in config:
RUN_SIMULATE = '{}; {}'.format(config['MPI_MODULES'], RUN_SIMULATE)
RUN_ANALYSIS = 'source {}; python'.format(NEST_VARS_PATH)
if 'MPI_MODULES' in config:
RUN_ANALYSIS = '{}; {}'.format(config['MPI_MODULES'], RUN_ANALYSIS)
rule all:
input:
expand('experiments/{experiment}.analysis_hash', experiment=EXPERIMENTS)
rule createNetwork:
input:
'experiments/{experiment}.py'
output:
'experiments/{experiment}.network_hash'
conda:
'humam.yml'
log:
'out/log/{experiment}_createNetwork.log'
shell:
'{RUN_CREATE} src/snakemake_network.py {input} {output}'
rule simulateNetwork:
input:
'experiments/{experiment}.py',
'experiments/{experiment}.network_hash'
output:
'experiments/{experiment}.simulation_hash'
conda:
'humam.yml'
threads:
THREADS_SIMULATE
log:
'out/log/{experiment}_simulateNetwork.log'
shell:
'{RUN_SIMULATE} src/snakemake_simulation.py {input} {output} {THREADS_SIMULATE}'
rule analyzeNetwork:
input:
'experiments/{experiment}.py',
'experiments/{experiment}.network_hash',
'experiments/{experiment}.simulation_hash'
output:
'experiments/{experiment}.analysis_hash'
conda:
'humam.yml'
log:
'out/log/{experiment}_analyzeNetwork.log'
shell:
'{RUN_ANALYSIS} src/snakemake_analysis.py {input} {output} {BASE_PATH}'