Skip to content

shimaamiri/ResearchTrack1_assignment1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Research Track 1 - First Assignment (University of Genova)

In this assignment, proposed by professor Carmine Recchiutto, the robot moves in a counter-clockwise direction without crushing into golden walls, and whenever encounters silver tokens, it grabs and moves them behind.

The flowchart of the program has been attached.

Installing

This program should be run using Python 2.7, the pygame library, PyPyBox2D, and PyYAML.

Runing the program

To run the program, use run.py, passing it the file names: python2 run.py file_name.py

The API for controlling a simulated robot is designed to be as similar as possible to the SR API.

Motors

The robot has two motors configured for skid steering, Motor Board. The left motor is connected to output 0 and the right motor to output 1.

The Motor Board API is identical to that of the SR API, except that motor boards cannot be addressed by serial number. So, to turn on the spot at one quarter of full power, one might write the following:

R.motors[0].m0.power = 25
R.motors[0].m1.power = -25

The Grabber

The robot is equipped with a grabber, capable of picking up a token which is in front of the robot and within 0.4 metres of the robot's centre. To pick up a token, call the R.grab method:

success = R.grab()

The R.grab function returns True if a token was successfully picked up, or False otherwise. If the robot is already holding a token, it will throw an AlreadyHoldingSomethingException.

To drop the token, call the R.release method.

Cable-tie flails are not implemented.

Vision

To help the robot find tokens and navigate, each token has markers stuck to it, as does each wall. The R.see method returns a list of all the markers the robot can see, as Marker objects. The robot can only see markers which it is facing towards.

Each Marker object has the following attributes:

  • info: a MarkerInfo object describing the marker itself. Has the following attributes:
    • code: the numeric code of the marker.
    • marker_type: the type of object the marker is attached to (either MARKER_TOKEN_GOLD, MARKER_TOKEN_SILVER or MARKER_ARENA).
    • offset: offset of the numeric code of the marker from the lowest numbered marker of its type. For example, token number 3 has the code 43, but offset 3.
    • size: the size that the marker would be in the real game, for compatibility with the SR API.
  • centre: the location of the marker in polar coordinates, as a PolarCoord object. Has the following attributes:
    • length: the distance from the centre of the robot to the object (in metres).
    • rot_y: rotation about the Y axis in degrees.
  • dist: an alias for centre.length
  • res: the value of the res parameter of R.see, for compatibility with the SR API.
  • rot_y: an alias for centre.rot_y
  • timestamp: the time at which the marker was seen (when R.see was called).

For example, the following code lists all of the markers the robot can see:

markers = R.see()
print "I can see", len(markers), "markers:"

for m in markers:
    if m.info.marker_type in (MARKER_TOKEN_GOLD, MARKER_TOKEN_SILVER):
        print " - Token {0} is {1} metres away".format( m.info.offset, m.dist )
    elif m.info.marker_type == MARKER_ARENA:
        print " - Arena marker {0} is {1} metres away".format( m.info.offset, m.dist )

#RT1_assignment #RT1_assignment #RT #RT #ResearchTrack1_assignment1

ResearchTrack1_assignment1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages