-
Notifications
You must be signed in to change notification settings - Fork 953
/
Copy pathsample.py
executable file
·50 lines (40 loc) · 1.73 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
from __future__ import print_function
import argparse
import os
from six.moves import cPickle
from six import text_type
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--save_dir', type=str, default='save',
help='model directory to store checkpointed models')
parser.add_argument('-n', type=int, default=500,
help='number of characters to sample')
parser.add_argument('--prime', type=text_type, default=u'',
help='prime text')
parser.add_argument('--sample', type=int, default=1,
help='0 to use max at each timestep, 1 to sample at '
'each timestep, 2 to sample on spaces')
args = parser.parse_args()
import tensorflow as tf
from model import Model
def sample(args):
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f:
saved_args = cPickle.load(f)
with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f:
chars, vocab = cPickle.load(f)
#Use most frequent char if no prime is given
if args.prime == '':
args.prime = chars[0]
model = Model(saved_args, training=False)
with tf.Session() as sess:
tf.global_variables_initializer().run()
saver = tf.train.Saver(tf.global_variables())
ckpt = tf.train.get_checkpoint_state(args.save_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
data = model.sample(sess, chars, vocab, args.n, args.prime,
args.sample).encode('utf-8')
print(data.decode("utf-8"))
if __name__ == '__main__':
sample(args)