-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathTreeGen.py
277 lines (230 loc) · 10.1 KB
/
TreeGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
################################ TreeGen ################################
# Generate halo merger trees using the Parkinson et al. (2008) algorithm.
# Arthur Fangzhou Jiang 2015 Yale University
# Arthur Fangzhou Jiang 2016 Hebrew University
# Arthur Fangzhou Jiang 2019 Hebrew University
######################## set up the environment #########################
#---user modules
import config as cfg
import cosmo as co
import init
from profiles import Dekel
import aux
#---python modules
import numpy as np
import time
from multiprocessing import Pool, cpu_count
import sys
# <<< for clean on-screen prints, use with caution, make sure that
# the warning is not prevalent or essential for the result
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
############################# user control ##############################
#---target halo, desired resolution, number of trees
lgM0_lo = 14.00
lgM0_hi = 14.50
z0 = 0.
lgMres = 8.5
Ntree = 24
#---baryonic-effect choice and output control
HaloResponse = 'NIHAO'
outfile1 = './OUTPUT_TREE_CLUSTER_NIHAO/tree%i_lgM%.2f.npz'#%(itree,lgM0)
#HaloResponse = 'APOSTLE'
#outfile1 = './OUTPUT_TREE_CLUSTER_APOSTLE/tree%i_lgM%.2f.npz'#%(itree,lgM0)
############################### compute #################################
print('>>> Generating %i trees for log(M_0)=%.2f-%.2f at log(M_res)=%.2f...'%\
(Ntree,lgM0_lo,lgM0_hi,lgMres))
#---
time_start = time.time()
#for itree in range(Ntree):
def loop(itree):
"""
Replaces the loop "for itree in range(Ntree):", for parallelization.
"""
time_start_tmp = time.time()
np.random.seed() # [important!] reseed the random number generator
lgM0 = lgM0_lo + np.random.random()*(lgM0_hi-lgM0_lo)
cfg.M0 = 10.**lgM0
cfg.z0 = z0
cfg.Mres = 10.**lgMres
cfg.Mmin = 0.04*cfg.Mres
k = 0 # the level, k, of the branch being considered
ik = 0 # how many level-k branches have been finished
Nk = 1 # total number of level-k branches
Nbranch = 1 # total number of branches in the current tree
Mak = [cfg.M0] # accretion masses of level-k branches
zak = [cfg.z0]
idk = [0] # branch ids of level-k branches
ipk = [-1] # parent ids of level-k branches (-1: no parent)
Mak_tmp = []
zak_tmp = []
idk_tmp = []
ipk_tmp = []
mass = np.zeros((cfg.Nmax,cfg.Nz)) - 99.
order = np.zeros((cfg.Nmax,cfg.Nz),np.int8) - 99
ParentID = np.zeros((cfg.Nmax,cfg.Nz),np.int16) - 99
VirialRadius = np.zeros((cfg.Nmax,cfg.Nz),np.float32) - 99.
concentration = np.zeros((cfg.Nmax,cfg.Nz),np.float32) - 99.
DekelConcentration = np.zeros((cfg.Nmax,cfg.Nz),np.float32) - 99.
DekelSlope = np.zeros((cfg.Nmax,cfg.Nz),np.float32) - 99.
StellarMass = np.zeros((cfg.Nmax,cfg.Nz)) - 99.
StellarSize = np.zeros((cfg.Nmax,cfg.Nz),np.float32) - 99.
coordinates = np.zeros((cfg.Nmax,cfg.Nz,6),np.float32)
while True: # loop over branches, until the full tree is completed.
# Starting from the main branch, draw progenitor(s) using the
# Parkinson+08 algorithm. When there are two progenitors, the less
# massive one is the root of a new branch. We draw branches level by
# level, i.e., When a new branch occurs, we record its root, but keep
# finishing the current branch and all the branches of the same level
# as the current branch, before moving on to the next-level branches.
M = [Mak[ik]] # mass history of current branch in fine timestep
z = [zak[ik]] # the redshifts of the mass history
cfg.M0 = Mak[ik]# descendent mass
cfg.z0 = zak[ik]# descendent redshift
id = idk[ik] # branch id
ip = ipk[ik] # parent id
while cfg.M0>cfg.Mmin:
if cfg.M0>cfg.Mres: zleaf = cfg.z0 # update leaf redshift
co.UpdateGlobalVariables(**cfg.cosmo)
M1,M2,Np = co.DrawProgenitors(**cfg.cosmo)
# update descendent halo mass and descendent redshift
cfg.M0 = M1
cfg.z0 = cfg.zW_interp(cfg.W0+cfg.dW)
if cfg.z0>cfg.zmax: break
if Np>1 and cfg.M0>cfg.Mres: # register next-level branches
Mak_tmp.append(M2)
zak_tmp.append(cfg.z0)
idk_tmp.append(Nbranch)
ipk_tmp.append(id)
Nbranch += 1
# record the mass history at the original time resolution
M.append(cfg.M0)
z.append(cfg.z0)
# Now that a branch is fully grown, do some book-keeping
# convert mass-history list to array
M = np.array(M)
z = np.array(z)
# downsample the fine-step mass history, M(z), onto the
# coarser output timesteps, cfg.zsample
Msample,zsample = aux.downsample(M,z,cfg.zsample)
iz = aux.FindClosestIndices(cfg.zsample,zsample)
izleaf = aux.FindNearestIndex(cfg.zsample,zleaf)
# compute halo structure throughout time on the coarse grid, up
# to the leaf point
t = co.t(z,cfg.h,cfg.Om,cfg.OL)
c,a,c2,Rv = [],[],[],[]
for i in iz:
if i > (izleaf+1): break # only compute structure below leaf
msk = z>=cfg.zsample[i]
if True not in msk: break # safety
ci,ai,Msi,c2i,c2DMOi = init.Dekel_fromMAH(M[msk],t[msk],
cfg.zsample[i],HaloResponse=HaloResponse)
Rvi = init.Rvir(M[msk][0],Delta=200.,z=cfg.zsample[i])
c.append(ci)
a.append(ai)
c2.append(c2i)
Rv.append(Rvi)
if i==iz[0]: Ms = Msi
#print(' i=%6i,ci=%8.2f,ai=%8.2f,log(Msi)=%8.2f,c2i=%8.2f'%\
# (i,ci,ai,np.log10(Msi),c2i)) # <<< for test
if len(c)==0: # <<< safety, dealing with rare cases where the
# branch's root z[0] is close to the maximum redshift -- when
# this happens, the mass history has only one element, and
# z[0] can be slightly above cfg.zsample[i] for the very
# first iteration, leaving the lists c,a,c2,Rv never updated
ci,ai,Msi,c2i=init.Dekel_fromMAH(M,t,z[0],
HaloResponse=HaloResponse)
c.append(ci)
a.append(ai)
c2.append(c2i)
Rv.append(Rvi)
Ms = Msi
# <<< test
#print(' branch root near max redshift: z=%7.2f,log(M)=%7.2f,c=%7.2f,a=%7.2f,c2=%7.2f,log(Ms)=%7.2f'%\
# (z[0],np.log10(M[0]),c[0],a[0],c2[0],np.log10(Ms)))
c = np.array(c)
a = np.array(a)
c2 = np.array(c2)
Rv = np.array(Rv)
Nc = len(c2) # length of a branch over which c2 is computed
# compute stellar size at the root of the branch, i.e., at the
# accretion epoch (z[0])
Re = init.Reff(Rv[0],c2[0])
# use the redshift id and parent-branch id to access the parent
# branch's information at our current branch's accretion epoch,
# in order to initialize the orbit
if ip==-1: # i.e., if the branch is the main branch
xv = np.zeros(6)
else:
Mp = mass[ip,iz[0]]
cp = DekelConcentration[ip,iz[0]]
ap = DekelSlope[ip,iz[0]]
hp = Dekel(Mp,cp,ap,Delta=200.,z=zsample[0])
eps = 1./np.pi*np.arccos(1.-2.*np.random.random())
xv = init.orbit(hp,xc=1.,eps=eps)
# <<< test
#print(' id=%6i,k=%2i,z=%7.2f,log(M)=%7.2f,c=%7.2f,a=%7.2f,c2=%7.2f,log(Ms)=%7.2f,Re=%7.2f,xv=%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f'%\
# (id,k,z[0],np.log10(M[0]),c[0],a[0],c2[0],np.log10(Ms),Re, xv[0],xv[1],xv[2],xv[3],xv[4],xv[5]))
# update the arrays for output
mass[id,iz] = Msample
order[id,iz] = k
ParentID[id,iz] = ip
VirialRadius[id,iz[0]:iz[0]+Nc] = Rv
concentration[id,iz[0]:iz[0]+Nc] = c2
DekelConcentration[id,iz[0]:iz[0]+Nc] = c
DekelSlope[id,iz[0]:iz[0]+Nc] = a
StellarMass[id,iz[0]] = Ms
StellarSize[id,iz[0]] = Re
coordinates[id,iz[0],:] = xv
# Check if all the level-k branches have been dealt with: if so,
# i.e., if ik==Nk, proceed to the next level.
ik += 1
if ik==Nk: # all level-k branches are done!
Mak = Mak_tmp
zak = zak_tmp
idk = idk_tmp
ipk = ipk_tmp
Nk = len(Mak)
ik = 0
Mak_tmp = []
zak_tmp = []
idk_tmp = []
ipk_tmp = []
if Nk==0:
break # jump out of "while True" if no next-level branch
k += 1 # update level
# trim and output
mass = mass[:id+1,:]
order = order[:id+1,:]
ParentID = ParentID[:id+1,:]
VirialRadius = VirialRadius[:id+1,:]
concentration = concentration[:id+1,:]
DekelConcentration = DekelConcentration[:id+1,:]
DekelSlope = DekelSlope[:id+1,:]
StellarMass = StellarMass[:id+1,:]
StellarSize = StellarSize[:id+1,:]
coordinates = coordinates[:id+1,:,:]
np.savez(outfile1%(itree,lgM0),
redshift = cfg.zsample,
CosmicTime = cfg.tsample,
mass = mass,
order = order,
ParentID = ParentID,
VirialRadius = VirialRadius,
concentration = concentration,
DekelConcentration = DekelConcentration,
DekelSlope = DekelSlope,
#VirialOverdensity = VirialOverdensity, # <<< no need in TreeGen
StellarMass = StellarMass,
StellarSize = StellarSize,
coordinates = coordinates,
)
time_end_tmp = time.time()
print(' Tree %5i: log(M_0)=%6.2f, %6i branches, %2i order, %8.1f sec'\
%(itree,lgM0,Nbranch,k,time_end_tmp-time_start_tmp))
#---for parallelization, comment for testing in serial mode
if __name__ == "__main__":
pool = Pool(cpu_count()) # use all cores
pool.map(loop, range(Ntree))
time_end = time.time()
print(' total time: %5.2f hours'%((time_end - time_start)/3600.))