-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZoonomia_Oligo_Design.Rmd
437 lines (270 loc) · 15.1 KB
/
Zoonomia_Oligo_Design.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
---
title: "Untitled"
author: "Troy McDiarmid"
date: "2024-04-07"
output: html_document
---
```{r setup, include=FALSE}
library(tidyverse)
library("DNABarcodes")
```
```{r}
##Create saturation mutagenesis of H1 and 7SK promoters
##Function to generate all SNVs or deletions accross a sequence
mutate_sequence <- function(string, num = 1, nucleotides = c("A","T","C","G","_")) {
l_str <- str_length(string)
choices <- cross(list(
cols = combn(seq_len(l_str), num, simplify = F),
muts = cross(rerun(num, nucleotides)) %>% map(unlist)
))
choice_matrix <-
map_dfr(choices, as_tibble, .id = "rows") %>%
mutate(rows = as.numeric(rows))
seq_matrix <- str_split(rep(string, max(choice_matrix$rows)), "", simplify = T)
seq_matrix[as.matrix(choice_matrix[,1:2])] <- str_to_lower(choice_matrix$muts)
apply(seq_matrix, 1, paste, collapse = "")
}
##Specific example
mutate_sequence("ATCG", num = 1)
##Saturation mutagenesis of H1
H1_Saturation_Seqs <- mutate_sequence("AATATTTGCATGTCGCTATGTGTTCTGGGAAATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTATGACACCACTCTTTCCC", num = 1) %>%
as.data.frame()
names(H1_Saturation_Seqs)[names(H1_Saturation_Seqs) == '.'] <- 'Sequence'
##Change all strings to uppercase and select only unique sequences (i.e. filter out WT replicates)
H1_Saturation_Seqs <- H1_Saturation_Seqs %>%
mutate(Pro_Seq = str_to_upper(Sequence))
##Add a column indicating variant position
H1_Saturation_Seqs$Variant_Position <- rep(1:str_length(H1_Saturation_Seqs$Pro_Seq), times = 5)
H1_Standard_Nucleotide <- tibble(x = c("AATATTTGCATGTCGCTATGTGTTCTGGGAAATCACCATAAACGTGAAATGTCTTTGGATTTGGGAATCTTATAAGTTCTGTATGACACCACTCTTTCCC")) %>%
mutate(x = str_to_upper(x)) %>%
separate_longer_position(x, width = 1)
H1_Saturation_Seqs$Standard_Nucleotide <- rep(H1_Standard_Nucleotide$x, times = 5)
H1_Saturation_Seqs$Variant_Nucleotide <- rep(c("A", "T", "C", "G", "Del"), each = str_length(H1_Saturation_Seqs$Pro_Seq))
H1_Saturation_Seqs$FASTA_Arrow <- ">"
H1_Saturation_Seqs$Variant_Arrow <- ">"
H1_Saturation_Seqs$Promoter_Name <- "H1"
H1_Saturation_Seqs <- H1_Saturation_Seqs %>%
unite(Seq_Name_1, FASTA_Arrow, Promoter_Name, sep = "") %>%
unite(Seq_Name_2, Seq_Name_1, Variant_Position) %>%
unite(Seq_Name, Seq_Name_2, Standard_Nucleotide, Variant_Arrow, Variant_Nucleotide, sep = "")
##Filter for only distinct barcodes
H1_Saturation_Seqs <- H1_Saturation_Seqs %>%
distinct(Pro_Seq, .keep_all = TRUE) %>%
mutate(Pro_Seq = str_replace(Pro_Seq, "_", "")) %>%
select(!Sequence, Seq_Name, Pro_Seq)
##Saturation mutagenesis of 7SK
SevenSK_Saturation_Seqs <- mutate_sequence("ctgcagtatttagcatgccccacccatctgcaaggcattctggatagtgtcaaaacagccggaaatcaagtccgtttatctcaaactttagcattttgggaataaatgatatttgctatgctggttaaattagattttagttaaatttcctgctgaagctctagtacgataagcaacttgacctaagtgtaaagttgagacttccttcaggtttatatagcttgtgcgccgcttgggtacctc", num = 1) %>%
as.data.frame()
names(SevenSK_Saturation_Seqs)[names(SevenSK_Saturation_Seqs) == '.'] <- 'Sequence'
##Change all strings to uppercase and select only unique sequences (i.e. filter out WT replicates)
SevenSK_Saturation_Seqs <- SevenSK_Saturation_Seqs %>%
mutate(Pro_Seq = str_to_upper(Sequence))
##Add a column indicating variant position
SevenSK_Saturation_Seqs$Variant_Position <- rep(1:str_length(SevenSK_Saturation_Seqs$Pro_Seq), times = 5)
SevenSK_Standard_Nucleotide <- tibble(x = c("ctgcagtatttagcatgccccacccatctgcaaggcattctggatagtgtcaaaacagccggaaatcaagtccgtttatctcaaactttagcattttgggaataaatgatatttgctatgctggttaaattagattttagttaaatttcctgctgaagctctagtacgataagcaacttgacctaagtgtaaagttgagacttccttcaggtttatatagcttgtgcgccgcttgggtacctc")) %>%
mutate(x = str_to_upper(x)) %>%
separate_longer_position(x, width = 1)
SevenSK_Saturation_Seqs$Standard_Nucleotide <- rep(SevenSK_Standard_Nucleotide$x, times = 5)
SevenSK_Saturation_Seqs$Variant_Nucleotide <- rep(c("A", "T", "C", "G", "Del"), each = str_length(SevenSK_Saturation_Seqs$Pro_Seq))
SevenSK_Saturation_Seqs$FASTA_Arrow <- ">"
SevenSK_Saturation_Seqs$Variant_Arrow <- ">"
SevenSK_Saturation_Seqs$Promoter_Name <- "7SK"
SevenSK_Saturation_Seqs <- SevenSK_Saturation_Seqs %>%
unite(Seq_Name_1, FASTA_Arrow, Promoter_Name, sep = "") %>%
unite(Seq_Name_2, Seq_Name_1, Variant_Position) %>%
unite(Seq_Name, Seq_Name_2, Standard_Nucleotide, Variant_Arrow, Variant_Nucleotide, sep = "")
##Filter for only distinct barcodes
SevenSK_Saturation_Seqs <- SevenSK_Saturation_Seqs %>%
distinct(Pro_Seq, .keep_all = TRUE) %>%
mutate(Pro_Seq = str_replace(Pro_Seq, "_", "")) %>%
select(!Sequence, Seq_Name, Pro_Seq)
```
```{r}
##Read in orthologous promoters and convert from fasta to dataframe
Ortholog_Pol3_Pro <- read_tsv("/Users/troymcdiarmid/Documents/U6_pro_series/U6_promoters_by_element/all_Pol3_promoters_cactus_2020v2_20240406.fa", col_names = FALSE)
n_seqs <- length(Ortholog_Pol3_Pro$X1)/2
Ortholog_Pol3_Pro$ID <- rep(1:n_seqs, each = 2)
Names <- Ortholog_Pol3_Pro %>%
filter(grepl(">", X1))
Seqs <- Ortholog_Pol3_Pro %>%
filter(!grepl(">", X1))
Ortholog_Pol3_Pro <- Names %>%
left_join(Seqs, by = "ID") %>%
select(ID, Seq_Name = X1.x, Pro_Seq = X1.y)
Ortholog_Pol3_Pro <- Ortholog_Pol3_Pro %>%
select(Seq_Name, Pro_Seq)
##Calculate how many unique sequences, duplicates, filter for unique sequences
length(unique(Ortholog_Pol3_Pro$Pro_Seq))
Dup_Seqs <- Ortholog_Pol3_Pro$Pro_Seq[duplicated(Ortholog_Pol3_Pro$Pro_Seq)]
Dup_Ortholog_Pol3_Pro <- Ortholog_Pol3_Pro %>%
filter(Pro_Seq %in% Dup_Seqs)
Distinct_Ortholog_Pol3_Pro <- Ortholog_Pol3_Pro %>%
distinct(Pro_Seq, .keep_all = TRUE) %>%
select(Seq_Name, Pro_Seq)
##Seeing how many of final promoters are extant or ancestral
Extant_Ortholog_Pol3_Pro <- Ortholog_Pol3_Pro %>%
filter(!grepl("fullTreeAnc", Seq_Name)) %>%
distinct(Pro_Seq, .keep_all = TRUE) %>%
filter(Pro_Seq %in% Distinct_Ortholog_Pol3_Pro$Pro_Seq)
Distinct_Ortholog_Pol3_Pro %>%
filter(!Pro_Seq %in% Extant_Ortholog_Pol3_Pro$Pro_Seq)
```
```{r}
##Add source column and bind everything together
Distinct_Ortholog_Pol3_Pro$Source <- "Ortholog_Promoter"
H1_Saturation_Seqs$Source <- "H1_Saturation"
SevenSK_Saturation_Seqs$Source <- "SevenSK_Saturation_Seqs"
#Bind everything together, calculate how many unique sequences, duplicates
Pol3_Pro <- rbind(Distinct_Ortholog_Pol3_Pro, H1_Saturation_Seqs, SevenSK_Saturation_Seqs)
length(unique(Pol3_Pro$Pro_Seq))
Dup_Seqs <- Pol3_Pro$Pro_Seq[duplicated(Pol3_Pro$Pro_Seq)]
Dup_Pol3_Pros <- Pol3_Pro %>%
filter(Pro_Seq %in% Dup_Seqs)
##Calculate sequence length and plot
Pol3_Pro <- Pol3_Pro %>%
mutate(Seq_Length = str_length(Pro_Seq))
ggplot(Pol3_Pro, aes(x = Seq_Length)) +
geom_histogram()
##Filter for all promoters greater than 282bp and chop them down, plot
Long_Pol3_Pro <- Pol3_Pro %>%
filter(Seq_Length > 259)
Short_Pol3_Pro <- Pol3_Pro %>%
filter(Seq_Length <= 259)
Long_Pol3_Pro <- Long_Pol3_Pro %>%
separate(Pro_Seq, into = c("Five_Prime_Cutoff", "Pro_Seq"), sep = -259) %>%
mutate(Seq_Length = str_length(Pro_Seq)) %>%
select(!Five_Prime_Cutoff)
Chopped_Pol3_Pro <- rbind(Long_Pol3_Pro, Short_Pol3_Pro)
ggplot(Chopped_Pol3_Pro, aes(x = Seq_Length)) +
geom_histogram()
##See how many of the promoters have restriction sites and change them
Forward_RS_Check <- Chopped_Pol3_Pro %>%
filter((grepl("GGTCTC", Pro_Seq)))
Reverse_RS_Check <- Chopped_Pol3_Pro %>%
filter((grepl("GAGACC", Pro_Seq)))
Chopped_Pol3_Pro <- Chopped_Pol3_Pro %>%
mutate(Pro_Seq = str_replace_all(Pro_Seq, "GGTCTC", "GGTTTC")) %>%
mutate(Pro_Seq = str_replace_all(Pro_Seq, "GAGACC", "GAGGCC"))
Forward_RS_Check_After_Correction <- Chopped_Pol3_Pro %>%
filter((grepl("GGTCTC", Pro_Seq)))
Forward_RS_Check_After_Correction <- Chopped_Pol3_Pro %>%
filter((grepl("GAGACC", Pro_Seq)))
```
```{r}
##Add restriction sites, pegRNAs, barcodes
Chopped_Pol3_Pro$Five_Prime_BsaI_Restriction <- "TAGTGAGGTCTCGGTGC"
Chopped_Pol3_Pro$Spacer <- "GGCCCAGACTGAGCACGTGA"
Chopped_Pol3_Pro$pegRNA_BB <- "GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGGACCGAGTCGGTCC"
Chopped_Pol3_Pro$RTT <- "TCTGCCATCA"
Chopped_Pol3_Pro$PBS <- "CGTGCTCAGTCTG"
Chopped_Pol3_Pro$Terminator_And_Three_Prime_BsaI_Restriction <- "TTTTTGAGACCTCCCTA"
##Create distance threshold barcodes, remove any with full or partial BsaI sites
#Dist_8N_Barcodes <- create.dnabarcodes(8, dist = 1, filter.triplets = FALSE)
#Dist_8N_Barcodes <- data.frame(matrix(unlist(Dist_8N_Barcodes), nrow=length(Dist_8N_Barcodes), byrow=TRUE))
#Dist_8N_Barcodes <- Dist_8N_Barcodes %>%
#select(BC_8N_Seq = matrix.unlist.Dist_8N_Barcodes...nrow...length.Dist_8N_Barcodes...)
#Dist_8N_Barcodes <- Dist_8N_Barcodes %>%
#filter(!(grepl("AAAA", BC_8N_Seq))) %>%
#filter(!(grepl("TTTT", BC_8N_Seq))) %>%
#filter(!(grepl("GGGG", BC_8N_Seq))) %>%
#filter(!(grepl("CCCC", BC_8N_Seq))) %>%
#filter(!(grepl("GGTCTC", BC_8N_Seq))) %>%
#filter(!(grepl("GAGACC", BC_8N_Seq))) %>%
#filter(!(grepl("GGTC", BC_8N_Seq))) %>%
#filter(!(grepl("GAGA", BC_8N_Seq)))
#Dist_8N_Barcodes$BC_8N_Seq <- Dist_8N_Barcodes[sample(1:nrow(Dist_8N_Barcodes)), ]
#Dist_8N_Barcodes <- Dist_8N_Barcodes %>%
#head(3*(length(Chopped_Pol3_Pro$Pro_Seq)))
##Select best barcodes from edit scores in K562
Top_8N_BCs <- read_csv("/Users/troymcdiarmid/Documents/U6_pro_series/Data/20240415_synHEK3_8N_K562_SC1_3/Pooled_Edit_Scores.csv") %>%
filter(Edit_Score > 0.5) %>%
filter(!(grepl("GGTCTC", pBC_Seq))) %>%
filter(!(grepl("GAGACC", pBC_Seq))) %>%
filter(!(grepl("GGTC", pBC_Seq))) %>%
filter(!(grepl("GAGA", pBC_Seq))) %>%
sample_n(3*(length(Chopped_Pol3_Pro$Pro_Seq)))
##Replicate the set of sequences 3 times for each barcode and add labels
Chopped_Pol3_Pro_BC1 <- Chopped_Pol3_Pro
Chopped_Pol3_Pro_BC1$BC_Number <- "BC_1"
Chopped_Pol3_Pro_BC2 <- Chopped_Pol3_Pro
Chopped_Pol3_Pro_BC2$BC_Number <- "BC_2"
Chopped_Pol3_Pro_BC3 <- Chopped_Pol3_Pro
Chopped_Pol3_Pro_BC3$BC_Number <- "BC_3"
Chopped_Pol3_Pro_BCs <- rbind(Chopped_Pol3_Pro_BC1, Chopped_Pol3_Pro_BC2, Chopped_Pol3_Pro_BC3)
Chopped_Pol3_Pro_BCs <- Chopped_Pol3_Pro_BCs %>%
unite(Seq_Name, Seq_Name, BC_Number)
##Add the barcodes
Chopped_Pol3_Pro_BCs$BC_8N <- Top_8N_BCs$pBC_Seq
##Reorder columns and join the functional sequence
RS_U6p_pegRNA8N_RS <- Chopped_Pol3_Pro_BCs %>%
select(Seq_Name, Five_Prime_BsaI_Restriction, Pro_Seq, Spacer, pegRNA_BB, RTT, BC_8N, PBS, Terminator_And_Three_Prime_BsaI_Restriction, Seq_Length) %>%
unite(RS_U6p_pegRNA8N_RS, Five_Prime_BsaI_Restriction, Pro_Seq, Spacer, pegRNA_BB, RTT, BC_8N, PBS, Terminator_And_Three_Prime_BsaI_Restriction, sep= "", remove = FALSE)
##Add a random sequence to all sequences to make them all longer than the 258 cut off then chop em down to be the same length (stuffer sequence of 300bp from c-terminal end of eGFP with not common restriction sites)
RS_U6p_pegRNA8N_RS$Stuffer_GFP_Seq <- "gctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacg"
RS_U6p_pegRNA8N_RS <- RS_U6p_pegRNA8N_RS %>%
mutate(Stuffer_GFP_Seq = str_to_upper(Stuffer_GFP_Seq))
RS_U6p_pegRNA8N_RS <- RS_U6p_pegRNA8N_RS %>%
unite(Full_Stuffer_RS_U6p_pegRNA8N_RS_Seq, Stuffer_GFP_Seq, RS_U6p_pegRNA8N_RS, sep = "", remove = FALSE)
##Calculate full seq length and chop down
RS_U6p_pegRNA8N_RS <- RS_U6p_pegRNA8N_RS %>%
mutate(Seq_Length = str_length(Full_Stuffer_RS_U6p_pegRNA8N_RS_Seq))
ggplot(RS_U6p_pegRNA8N_RS, aes(x = Seq_Length)) +
geom_histogram()
##Filter for all promoters greater than 282bp and chop them down, plot
Long_RS_U6p_pegRNA8N_RS <- RS_U6p_pegRNA8N_RS %>%
filter(Seq_Length > 420)
Short_RS_U6p_pegRNA8N_RS <- RS_U6p_pegRNA8N_RS %>%
filter(Seq_Length <= 420)
Long_RS_U6p_pegRNA8N_RS <- Long_RS_U6p_pegRNA8N_RS %>%
separate(Full_Stuffer_RS_U6p_pegRNA8N_RS_Seq, into = c("Five_Prime_Cutoff", "Full_Stuffer_RS_U6p_pegRNA8N_RS_Seq"), sep = -420) %>%
mutate(Seq_Length = str_length(Full_Stuffer_RS_U6p_pegRNA8N_RS_Seq)) %>%
select(!Five_Prime_Cutoff)
Chopped_RS_U6p_pegRNA8N_RS <- rbind(Long_RS_U6p_pegRNA8N_RS, Short_RS_U6p_pegRNA8N_RS)
ggplot(Chopped_RS_U6p_pegRNA8N_RS, aes(x = Seq_Length)) +
geom_histogram()
##Add PCR handles
Chopped_RS_U6p_pegRNA8N_RS$PCR_Handle_15_F <- "GACGGGGAATTAACC"
Chopped_RS_U6p_pegRNA8N_RS$PCR_Handle_15_R <- "GCTTACGGGCAACAT"
##Create full oligo sequence
Chopped_RS_U6p_pegRNA8N_RS <- Chopped_RS_U6p_pegRNA8N_RS %>%
unite(Full_Oligo_Seq, PCR_Handle_15_F, Full_Stuffer_RS_U6p_pegRNA8N_RS_Seq, PCR_Handle_15_R, sep = "", remove = FALSE) %>%
mutate(Pro_Seq_Length = str_length(Pro_Seq)) %>%
mutate(RS_U6p_pegRNA8N_RS_Seq_Length = str_length(RS_U6p_pegRNA8N_RS)) %>%
mutate(Full_Oligo_Seq_Length = str_length(Full_Oligo_Seq))
```
```{r}
##Make sure there are no remaining restriction sites
Chopped_RS_U6p_pegRNA8N_RS <- Chopped_RS_U6p_pegRNA8N_RS %>%
unite(U6p_pegRNA8N, Pro_Seq, Spacer, pegRNA_BB, RTT, BC_8N, PBS, Terminator_And_Three_Prime_BsaI_Restriction, sep= "", remove = FALSE) %>%
separate(U6p_pegRNA8N, into = c("U6p_pegRNA8N", "Three_Prime_BsaI"), sep = -12) %>%
select(!Three_Prime_BsaI)
Forward_RS_Check <- Chopped_RS_U6p_pegRNA8N_RS %>%
filter((grepl("GGTCTC", U6p_pegRNA8N)))
Reverse_RS_Check <- Chopped_RS_U6p_pegRNA8N_RS %>%
filter((grepl("GAGACC", U6p_pegRNA8N)))
```
```{r}
##Create the final olio sequence table
Final_PolIII_Oligos <- Chopped_RS_U6p_pegRNA8N_RS %>%
select(Seq_Name, Full_Oligo_Seq:RS_U6p_pegRNA8N_RS, PCR_Handle_15_F, Five_Prime_BsaI_Restriction:Terminator_And_Three_Prime_BsaI_Restriction, PCR_Handle_15_R, Pro_Seq_Length:Full_Oligo_Seq_Length)
Final_PolIII_Oligos$Oligo_ID <- seq(1:length(Final_PolIII_Oligos$Seq_Name))
Final_PolIII_Oligos <- Final_PolIII_Oligos %>%
select(Oligo_ID, Seq_Name, Full_Oligo_Seq:RS_U6p_pegRNA8N_RS, PCR_Handle_15_F, Five_Prime_BsaI_Restriction:Terminator_And_Three_Prime_BsaI_Restriction, PCR_Handle_15_R, Pro_Seq_Length:Full_Oligo_Seq_Length)
#write_csv(Final_PolIII_Oligos, "/Users/troymcdiarmid/Documents/U6_pro_series/eBlock_order_spreadsheets/TAM_Final_Pol3_Promoter_450bp_Twist_Oligos_240416.csv")
write_csv(Final_PolIII_Oligos, "/Users/troymcdiarmid/Documents/U6_pro_series/eBlock_order_spreadsheets/TAM_Final_Pol3_Promoter_450bp_Twist_Oligos_Ndate.csv")
```
```{r}
##Check oligo order before buying
Final_PolIII_Pro_Oligos <- read_csv("/Users/troymcdiarmid/Documents/U6_pro_series/eBlock_order_spreadsheets/TAM_Final_Pol3_Promoter_450bp_Twist_Oligos_240416.csv")
Twist_Order <- read_csv("/Users/troymcdiarmid/Downloads/240418_Shendure-500mer-submission.csv", skip = 2) %>%
select(Name, Fragment_Sequence = `Fragment Sequence`)
##Make sure allthe oligos are there
Oligos_In_Twist_Order <- Twist_Order %>%
filter(Fragment_Sequence %in% Final_PolIII_Pro_Oligos$Full_Oligo_Seq)
length(Oligos_In_Twist_Order$Fragment_Sequence)
##Check that PCR primers are only perfect matches to primers
Twist_Order %>%
filter((grepl("GACGGGGAATTAACC", Fragment_Sequence)))
Twist_Order %>%
filter((grepl("GCTTACGGGCAACAT", Fragment_Sequence)))
```