-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSVM_dynamic_lin.cpp
146 lines (125 loc) · 5.7 KB
/
SVM_dynamic_lin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright (C) 2015, University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED “AS IS” FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called “open source” software licenses (“Open Source
// Components”), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensee’s request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to [email protected]
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite one of the following works:
//
// Tadas Baltrusaitis, Marwa Mahmoud, and Peter Robinson.
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
// Facial Expression Recognition and Analysis Challenge 2015,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
///////////////////////////////////////////////////////////////////////////////
#include "SVM_dynamic_lin.h"
#include "CLM_core.h"
using namespace FaceAnalysis;
void SVM_dynamic_lin::Read(std::ifstream& stream, const std::vector<std::string>& au_names)
{
if(this->means.empty())
{
CLMTracker::ReadMatBin(stream, this->means);
}
else
{
Mat_<double> m_tmp;
CLMTracker::ReadMatBin(stream, m_tmp);
if(cv::norm(m_tmp - this->means > 0.00001))
{
cout << "Something went wrong with the SVR dynamic regressors" << endl;
}
}
Mat_<double> support_vectors_curr;
CLMTracker::ReadMatBin(stream, support_vectors_curr);
double bias;
stream.read((char *)&bias, 8);
// Read in positive or negative class
double pos_class;
stream.read((char *)&pos_class, 8);
double neg_class;
stream.read((char *)&neg_class, 8);
// Add a column vector to the matrix of support vectors (each column is a support vector)
if(!this->support_vectors.empty())
{
cv::transpose(this->support_vectors, this->support_vectors);
cv::transpose(support_vectors_curr, support_vectors_curr);
this->support_vectors.push_back(support_vectors_curr);
cv::transpose(this->support_vectors, this->support_vectors);
cv::transpose(this->biases, this->biases);
this->biases.push_back(cv::Mat_<double>(1, 1, bias));
cv::transpose(this->biases, this->biases);
}
else
{
this->support_vectors.push_back(support_vectors_curr);
this->biases.push_back(cv::Mat_<double>(1, 1, bias));
}
this->pos_classes.push_back(pos_class);
this->neg_classes.push_back(neg_class);
for(size_t i=0; i < au_names.size(); ++i)
{
this->AU_names.push_back(au_names[i]);
}
}
// Prediction using the HOG descriptor
void SVM_dynamic_lin::Predict(std::vector<double>& predictions, std::vector<std::string>& names, const cv::Mat_<double>& fhog_descriptor, const cv::Mat_<double>& geom_params, const cv::Mat_<double>& running_median, const cv::Mat_<double>& running_median_geom)
{
if(AU_names.size() > 0)
{
Mat_<double> preds;
if(fhog_descriptor.cols == this->means.cols)
{
preds = (fhog_descriptor - this->means - running_median) * this->support_vectors + this->biases;
}
else
{
Mat_<double> input;
cv::hconcat(fhog_descriptor, geom_params, input);
Mat_<double> run_med;
cv::hconcat(running_median, running_median_geom, run_med);
preds = (input - this->means - run_med) * this->support_vectors + this->biases;
}
for(int i = 0; i < preds.cols; ++i)
{
if(preds.at<double>(i) > 0)
{
predictions.push_back(pos_classes[i]);
}
else
{
predictions.push_back(neg_classes[i]);
}
}
names = this->AU_names;
}
}