-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
557 lines (469 loc) · 21.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for logging and serialization"""
import os
import random
import time
import numpy as np
import torch
import json
import subprocess
import socket
from tqdm import tqdm
from SwissArmyTransformer import mpu
from tensorboardX import SummaryWriter
SUMMARY_WRITER_DIR_NAME = 'runs'
def get_log_dir(name, base):
return os.path.join(base, SUMMARY_WRITER_DIR_NAME, name)
def get_sample_writer(log_dir, iteration=0):
"""Returns a tensorboard summary writer
"""
return SummaryWriter(
log_dir=log_dir, purge_step=iteration)
def tqdm_rank_0(iterable, **kwargs):
if torch.distributed.get_rank() == 0:
return tqdm(iterable, **kwargs)
else:
return iterable
def print_rank_0(*message):
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(*message, flush=True)
else:
print(*message, flush=True)
def get_hostname():
hostname_cmd = ["hostname -I"]
result = subprocess.check_output(hostname_cmd, shell=True)
master_addr = result.decode('utf-8').split()[0]
return master_addr
def check_port_in_use(port, host='127.0.0.1'):
s = None
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(1)
s.connect((host, int(port)))
return True
except socket.error:
return False
finally:
if s:
s.close()
def get_spare_port(args):
if torch.distributed.get_rank() == 0:
port = random.randrange(10000, 65535)
while port == args.master_port or check_port_in_use(port, args.master_ip):
port = random.randrange(10000, 65535)
port = torch.cuda.LongTensor([port])
else:
port = torch.cuda.LongTensor([0])
torch.distributed.broadcast(port, 0)
port = port.item()
return port
def print_and_save_args(args, verbose=True, log_dir=None):
"""Print arguments."""
if verbose:
print('arguments:', flush=True)
for arg in vars(args):
dots = '.' * (29 - len(arg))
print(' {} {} {}'.format(arg, dots, getattr(args, arg)), flush=True)
if log_dir is not None:
json_file = os.path.join(log_dir, "config.json")
with open(json_file, "w") as output:
json.dump(vars(args), output, sort_keys=True)
if args.deepspeed and args.deepspeed_config is not None:
with open(args.deepspeed_config) as file:
deepspeed_config = json.load(file)
deepspeed_json_file = os.path.join(log_dir, "config_gpt_large.json")
with open(deepspeed_json_file, "w") as output:
json.dump(deepspeed_config, output)
def print_params_min_max_norm(optimizer, iteration):
"""Print min, max, and norm of all parameters."""
index = 0
rank = torch.distributed.get_rank()
string = 'iteration, rank, index, model-parallel,min, max, norm\n'
optimizer_ = optimizer
for param_group in optimizer_.param_groups:
for param in param_group['params']:
index += 1
min_ = param.data.min()
max_ = param.data.max()
norm = param.data.norm()
string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format(
iteration, rank, index, int(param.model_parallel))
string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm)
print(string, flush=True)
class Timers:
"""Group of timers."""
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = self.Timer(name)
return self.timers[name]
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(
reset=reset) * 1000.0 / normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
print_rank_0(string)
def get_checkpoint_name(checkpoints_path, iteration, release=False, zero=False):
if release:
d = 'release'
else:
d = '{}'.format(iteration)
if zero:
dp_rank = mpu.get_data_parallel_rank()
d += '_zero_dp_rank_{}'.format(dp_rank)
return os.path.join(checkpoints_path, d, 'mp_rank_{:02d}_model_states.pt'.format(mpu.get_model_parallel_rank()))
def ensure_directory_exists(filename):
dirname = os.path.dirname(filename)
if not os.path.exists(dirname):
os.makedirs(dirname, exist_ok=True)
def get_checkpoint_tracker_filename(checkpoints_path):
return os.path.join(checkpoints_path, 'latest_checkpointed_iteration.txt')
def save_zero_checkpoint(args, iteration, optimizer):
zero_sd = {'iteration': iteration,
'optimizer_state_dict': optimizer.state_dict()}
zero_checkpoint_name = get_checkpoint_name(args.save, iteration, zero=True)
ensure_directory_exists(zero_checkpoint_name)
torch.save(zero_sd, zero_checkpoint_name)
print(' successfully saved {}'.format(zero_checkpoint_name))
def tqdm_rank_0(iterable, **kwargs):
if torch.distributed.get_rank() == 0:
return tqdm(iterable, **kwargs)
else:
return iterable
def save_checkpoint(iteration, model, optimizer, lr_scheduler, args, tag=None, barrier=True,
only_changed_parameters=False, no_deepspeed=False, no_save_optim=False):
"""Save a model checkpoint."""
if tag is None:
tag = str(iteration)
if args.deepspeed and not no_deepspeed and not args.no_deepspeed_save:
save_ds_checkpoint(iteration, model, lr_scheduler, args, tag=tag)
else:
# Only rank zer0 of the data parallel writes to the disk.
if mpu.get_data_parallel_rank() == 0:
checkpoint_name = get_checkpoint_name(args.save, tag)
print('global rank {} is saving checkpoint at iteration {:7d} to {}'.
format(torch.distributed.get_rank(), iteration, checkpoint_name))
sd = {'iteration': iteration}
if args.deepspeed:
model = model.module
state_dict = model.state_dict()
if only_changed_parameters:
requires_grad_dict = {}
for name, parameter in model.named_parameters():
requires_grad_dict[name] = parameter.requires_grad
state_dict = {key: value for key, value in state_dict.items() if requires_grad_dict.get(key, True)}
sd['module'] = state_dict
# Optimizer stuff.
print(f"args.no_save_optim: {args.no_save_optim}")
print(f"args.no_save_rng: {args.no_save_rng}")
if not args.no_save_optim and not no_save_optim:
if optimizer is not None:
sd['optimizer'] = optimizer.state_dict()
if lr_scheduler is not None:
sd['lr_scheduler'] = lr_scheduler.state_dict()
# rng states.
if not args.no_save_rng:
sd['random_rng_state'] = random.getstate()
sd['np_rng_state'] = np.random.get_state()
sd['torch_rng_state'] = torch.get_rng_state()
sd['cuda_rng_state'] = torch.cuda.get_rng_state()
if args.checkpoint_activations:
sd['rng_tracker_states'] = mpu.get_cuda_rng_tracker().get_states()
ensure_directory_exists(checkpoint_name)
torch.save(sd, checkpoint_name)
print(' successfully saved {}'.format(checkpoint_name))
# Wait so everyone is done (necessary)
if barrier:
torch.distributed.barrier()
# And update the latest iteration
if torch.distributed.get_rank() == 0:
tracker_filename = get_checkpoint_tracker_filename(args.save)
with open(tracker_filename, 'w') as f:
f.write(tag)
def save_ds_checkpoint(iteration, model, lr_scheduler, args, tag):
"""Save a model checkpoint."""
sd = {}
sd['iteration'] = iteration
if lr_scheduler is not None:
sd['client_lr_scheduler'] = lr_scheduler.state_dict()
# rng states.
if not args.no_save_rng:
sd['random_rng_state'] = random.getstate()
sd['np_rng_state'] = np.random.get_state()
sd['torch_rng_state'] = torch.get_rng_state()
sd['cuda_rng_state'] = torch.cuda.get_rng_state()
sd['rng_tracker_states'] = mpu.get_cuda_rng_tracker().get_states()
model.save_checkpoint(args.save, tag, client_state=sd)
def get_checkpoint_iteration(load_path):
# Read the tracker file and set the iteration.
tracker_filename = get_checkpoint_tracker_filename(load_path)
if not os.path.isfile(tracker_filename):
print_rank_0('WARNING: could not find the metadata file {} '.format(
tracker_filename))
if os.path.isdir(load_path):
path = os.path.normpath(load_path)
load_dir, tag = os.path.split(path)
print_rank_0('Try to directly load the checkpoint from the directory')
return load_dir, tag, False, True
print_rank_0(' will not load any checkpoints and will start from '
'random')
return load_path, 0, False, False
with open(tracker_filename, 'r') as f:
metastring = f.read().strip()
release = metastring == 'release'
# try:
# iteration = int(metastring)
# except ValueError:
# release = metastring == 'release'
# if not release:
# print_rank_0('ERROR: Invalid metadata file {}. Exiting'.format(
# tracker_filename))
# exit()
# assert iteration > 0 or release, 'error parsing metadata file {}'.format(
# tracker_filename)
return load_path, metastring, release, True
def load_checkpoint(model, optimizer, lr_scheduler, args, no_deepspeed=False, no_load_optim=False):
"""Load a model checkpoint."""
load_dir, tag, release, success = get_checkpoint_iteration(args.load)
print_rank_0(f'debug load_dir: {load_dir}, tag: {tag}, release: {release}, success: {success}')
if not success:
return 0
print_rank_0(f'debug no_deepspeed: {no_deepspeed}, args.old_checkpoint: {args.old_checkpoint}')
if args.deepspeed and not no_deepspeed and not args.old_checkpoint:
load_optimizer_states = not args.no_load_optim and not no_load_optim
checkpoint_name, sd = model.load_checkpoint(load_dir, tag,
load_optimizer_states=load_optimizer_states,
load_lr_scheduler_states=not args.no_load_lr_scheduler)
if not load_optimizer_states and (args.fp16 or args.bf16) and optimizer is not None:
print_rank_0("Refresh fp32 parameters")
if args.deepspeed:
optimizer.refresh_fp32_params()
else:
optimizer._model_params_to_master_params()
if not args.no_load_lr_scheduler and "client_lr_scheduler" in sd:
lr_scheduler.load_state_dict(sd["client_lr_scheduler"])
print_rank_0("Load lr scheduler state")
if checkpoint_name is None:
if mpu.get_data_parallel_rank() == 0:
print("Unable to load checkpoint.")
return tag
else:
# Checkpoint.
checkpoint_name = get_checkpoint_name(load_dir, tag, release)
if mpu.get_data_parallel_rank() == 0:
print('global rank {} is loading checkpoint {}'.format(
torch.distributed.get_rank(), checkpoint_name))
# Load the checkpoint.
sd = torch.load(checkpoint_name, map_location='cpu')
# Model.
if args.deepspeed:
model = model.module
# Process the checkpoint for GLM
if args.block_lm and args.old_checkpoint:
sd['module']['transformer.word_embeddings.weight'] = sd['module']['word_embeddings.weight']
del sd['module']['word_embeddings.weight']
sd['module']['mixins.block_position_embedding.block_position_embeddings.weight'] = sd['module'][
'transformer.block_position_embeddings.weight']
del sd['module']['transformer.block_position_embeddings.weight']
missing_keys, unexpected_keys = model.load_state_dict(sd['module'], strict=False)
if missing_keys or unexpected_keys:
print_rank_0(f"Missing keys {missing_keys}, unexpected keys {unexpected_keys}")
# Optimizer.
optimizer_loaded = False
if not release and not args.finetune and not args.no_load_optim and not no_load_optim:
try:
if optimizer is not None:
optimizer.load_state_dict(sd['optimizer'])
optimizer_loaded = True
if lr_scheduler is not None:
lr_scheduler.load_state_dict(sd['lr_scheduler'])
except KeyError:
print_rank_0('Unable to load optimizer from checkpoint {}, exiting. '
'Specify --no-load-optim or --finetune to prevent '
'attempting to load the optimizer '
'state.'.format(checkpoint_name))
if not optimizer_loaded and (args.fp16 or args.bf16) and optimizer is not None:
print_rank_0("Refresh fp32 parameters")
if args.deepspeed:
optimizer.refresh_fp32_params()
else:
optimizer._model_params_to_master_params()
# Iterations.
if args.finetune or release or args.no_load_iteration:
iteration = 0
else:
try:
iteration = sd['iteration']
except KeyError:
try: # Backward compatible with older checkpoints
iteration = sd['total_iters']
except KeyError:
print_rank_0('A metadata file exists but Unable to load iteration '
' from checkpoint {}, starting from 0 iteration'.format(checkpoint_name))
iteration = 0
# rng states.
if not release and not args.finetune and not args.no_load_rng:
try:
random.setstate(sd['random_rng_state'])
np.random.set_state(sd['np_rng_state'])
torch.set_rng_state(sd['torch_rng_state'])
torch.cuda.set_rng_state(sd['cuda_rng_state'])
mpu.get_cuda_rng_tracker().set_states(sd['rng_tracker_states'])
except KeyError:
print_rank_0('Unable to load random state from checkpoint {}, exiting. '
'Specify --no-load-rng or --finetune to prevent '
'attempting to load the random '
'state.'.format(checkpoint_name))
if mpu.get_data_parallel_rank() == 0:
print(' successfully loaded {}'.format(checkpoint_name))
return iteration
def load_pretrained(model, checkpoint_path, args, optimizer=None):
load_dir, tag, release, success = get_checkpoint_iteration(checkpoint_path)
checkpoint_name = get_checkpoint_name(load_dir, tag, release)
if mpu.get_data_parallel_rank() == 0:
print('global rank {} is loading pretrained model {}'.format(
torch.distributed.get_rank(), checkpoint_name))
# Load the checkpoint.
sd = torch.load(checkpoint_name, map_location='cpu')
# Model.
if args.block_lm and args.old_checkpoint:
sd['module']['transformer.word_embeddings.weight'] = sd['module']['word_embeddings.weight']
del sd['module']['word_embeddings.weight']
sd['module']['mixins.block_position_embedding.block_position_embeddings.weight'] = sd['module'][
'transformer.block_position_embeddings.weight']
del sd['module']['transformer.block_position_embeddings.weight']
missing_keys, unexpected_keys = model.load_state_dict(sd['module'], strict=False)
if missing_keys or unexpected_keys:
print_rank_0(f"Missing keys {missing_keys}, unexpected keys {unexpected_keys}")
if (args.fp16 or args.bf16) and optimizer is not None:
# This is critical when only model is loaded. We should make sure
# master parameters are also updated.
print_rank_0("Refresh fp32 parameters")
if args.deepspeed:
optimizer.refresh_fp32_params()
else:
optimizer._model_params_to_master_params()
def load_weights(src, dst, dst2src=False):
"""
Loads weights from src to dst via in place copy.
src is a huggingface gpt2model, while dst is one of our models.
dst2src=True loads parameters from our models into huggingface's.
^dst2src is still untested
"""
conv_layer = 'Conv1D' in str(type(src))
for n, p in src.named_parameters():
if dst2src:
data = dst._parameters[n].data
load = p.data
else:
data = p.data
load = dst._parameters[n].data
if conv_layer and 'weight' in n:
data = data.t().contiguous()
load.copy_(data)
# dst._parameters[n].data.copy_(data)
def load_mlp(our, oai, dst2src=False):
load_weights(oai.c_fc, our.dense_h_to_4h, dst2src)
load_weights(oai.c_proj, our.dense_4h_to_h, dst2src)
def load_attention(our, oai, dst2src=False):
load_weights(oai.c_attn, our.query_key_value, dst2src)
load_weights(oai.c_proj, our.dense, dst2src)
def load_transformer_layer(our, oai, dst2src=False):
load_weights(oai.ln_1, our.input_layernorm, dst2src)
load_weights(oai.ln_2, our.post_attention_layernorm, dst2src)
load_mlp(our.mlp, oai.mlp, dst2src)
load_attention(our.attention, oai.attn, dst2src)
def move_weights(our, oai, dst2src=False):
"""
Loads weights from `oai` to `our` via in place copy.
`oai` is a huggingface gpt2model, while `our` is one of our models.
dst2src=True loads parameters from our models into huggingface's.
^dst2src=True is still untested
"""
# while isinstance(our, (torchDDP, model.distributed.DistributedDataParallel, FP16_Module)):
# our=our.module
transformer_model = oai.transformer
load_weights(transformer_model.ln_f, our.transformer.final_layernorm, dst2src)
load_weights(transformer_model.wte, our.word_embeddings, dst2src)
load_weights(transformer_model.wpe, our.position_embeddings, dst2src)
for our_layer, oai_layer in zip(our.transformer.layers, oai.transformer.h):
load_transformer_layer(our_layer, oai_layer, dst2src)
def debug_finetune_data(local_vars, batch_id, tokenizer):
tokens, target_ids = local_vars["tokens"], local_vars["target_ids"]
attention_mask, logit_mask, position_ids = local_vars["attention_mask"], local_vars["logit_mask"], local_vars[
"position_ids"]
output_tokens = []
sep = attention_mask[batch_id].item()
for i, token in enumerate(tokens[batch_id][:sep].tolist()):
token = tokenizer.IdToToken(token)
if token == '[MASK]':
token = f"[{position_ids[batch_id][0, i].item()}]"
output_tokens.append(token)
print(" ".join(output_tokens))
target_positions = []
for i in range(sep, tokens.size(-1)):
if logit_mask[batch_id][i]:
target_positions.append(i)
print(target_positions)
print(tokenizer.DecodeIds(tokens[batch_id][target_positions].tolist()))
if len(target_ids.shape) > 2:
print(tokenizer.DecodeIds(target_ids[batch_id][target_positions].tolist()))
else:
print(tokenizer.DecodeIds(target_ids[batch_id].tolist()))
print(position_ids[batch_id][:, target_positions])