-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify2.m
35 lines (35 loc) · 1.16 KB
/
classify2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function [t] = classify2(Model, X)
N = size(X,1);
reshaped = reshape(X(1,:), [32, 32, 3]);
extracted = extract_feat2(reshaped);
K = size(extracted, 1);
xTest = zeros(N,K);
for i = 1:size(X,1)
reshaped = reshape(X(i,:), [32, 32, 3]);
xTest(i,:) = extract_feat2(reshaped);
end
centroids = Model.centroids; % 10 * L, where L = #features
oldcentroids = centroids;
feats = Model.features;
weights = Model.weights;
numTsEx = size(xTest,1);
numTrEx = size(feats,1);
numFeats = size(feats,2);
t = zeros(N,1);
Y = Model.Y;
for i = 1:numTsEx
test = xTest(i,:);
for iters = 1 : 1000
label = findLabel(test, centroids);
if (iters == 1) oldlabel = label; end
if ~(oldlabel == label)
centroids(oldlabel+1,:) = oldcentroids(oldlabel+1,:);
weights(oldlabel+1) = weights(oldlabel+1) - 1;
end
centroids(label+1,:) = (weights(label+1) * centroids(label+1,:) + test)/(weights(label+1)+1);
weights(label+1) = weights(label+1) + 1;
oldlabel = label;
end
t(i) = label;
end
end