Skip to content

Latest commit

 

History

History
 
 

serving

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

服务端预测部署

PaddleDetection训练出来的模型可以使用Serving 部署在服务端。
本教程以在COCO数据集上用configs/yolov3/yolov3_darknet53_270e_coco.yml算法训练的模型进行部署。
预训练模型权重文件为yolov3_darknet53_270e_coco.pdparams

1. 首先验证模型

python tools/infer.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --infer_img=demo/000000014439.jpg -o use_gpu=True weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --infer_img=demo/000000014439.jpg

2. 安装 paddle serving

请参考PaddleServing 中安装教程安装(版本>=0.6.0)。

3. 导出模型

PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:导出模型

python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True

以上命令会在output_inference/文件夹下生成一个yolov3_darknet53_270e_coco文件夹:

output_inference
│   ├── yolov3_darknet53_270e_coco
│   │   ├── infer_cfg.yml
│   │   ├── model.pdiparams
│   │   ├── model.pdiparams.info
│   │   ├── model.pdmodel
│   │   ├── serving_client
│   │   │   ├── serving_client_conf.prototxt
│   │   │   ├── serving_client_conf.stream.prototxt
│   │   ├── serving_server
│   │   │   ├── __model__
│   │   │   ├── __params__
│   │   │   ├── serving_server_conf.prototxt
│   │   │   ├── serving_server_conf.stream.prototxt
│   │   │   ├── ...

serving_client文件夹下serving_client_conf.prototxt详细说明了模型输入输出信息 serving_client_conf.prototxt文件内容为:

lient_conf.prototxt
feed_var {
  name: "im_shape"
  alias_name: "im_shape"
  is_lod_tensor: false
  feed_type: 1
  shape: 2
}
feed_var {
  name: "image"
  alias_name: "image"
  is_lod_tensor: false
  feed_type: 1
  shape: 3
  shape: 608
  shape: 608
}
feed_var {
  name: "scale_factor"
  alias_name: "scale_factor"
  is_lod_tensor: false
  feed_type: 1
  shape: 2
}
fetch_var {
  name: "save_infer_model/scale_0.tmp_1"
  alias_name: "save_infer_model/scale_0.tmp_1"
  is_lod_tensor: true
  fetch_type: 1
  shape: -1
}
fetch_var {
  name: "save_infer_model/scale_1.tmp_1"
  alias_name: "save_infer_model/scale_1.tmp_1"
  is_lod_tensor: true
  fetch_type: 2
  shape: -1
}

4. 启动PaddleServing服务

cd output_inference/yolov3_darknet53_270e_coco/

# GPU
python -m paddle_serving_server.serve --model serving_server --port 9393 --gpu_ids 0

# CPU
python -m paddle_serving_server.serve --model serving_server --port 9393

5. 测试部署的服务

准备label_list.txt文件

# 进入到导出模型文件夹
cd output_inference/yolov3_darknet53_270e_coco/

# 将数据集对应的label_list.txt文件放到当前文件夹下

设置prototxt文件路径为serving_client/serving_client_conf.prototxt
设置fetchfetch=["save_infer_model/scale_0.tmp_1"])

测试

# 进入目录
cd output_inference/yolov3_darknet53_270e_coco/

# 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`000000014439.jpg`两个文件
python ../../deploy/serving/test_client.py ../../demo/000000014439.jpg