English | 简体中文
FairMOT is based on an Anchor Free detector Centernet, which overcomes the problem of anchor and feature misalignment in anchor based detection framework. The fusion of deep and shallow features enables the detection and ReID tasks to obtain the required features respectively. It also uses low dimensional ReID features. FairMOT is a simple baseline composed of two homogeneous branches propose to predict the pixel level target score and ReID features. It achieves the fairness between the two tasks and obtains a higher level of real-time MOT performance.
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34(paper) | 1088x608 | 83.3 | 81.9 | 544 | 3822 | 14095 | - | - | - |
DLA-34 | 1088x608 | 83.2 | 83.1 | 499 | 3861 | 14223 | - | model | config |
DLA-34 | 864x480 | 80.8 | 81.1 | 561 | 3643 | 16967 | - | model | config |
DLA-34 | 576x320 | 74.0 | 76.1 | 640 | 4989 | 23034 | - | model | config |
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34(paper) | 1088x608 | 74.9 | 72.8 | 1074 | - | - | 25.9 | - | - |
DLA-34 | 1088x608 | 75.0 | 74.7 | 919 | 7934 | 36747 | - | model | config |
DLA-34 | 864x480 | 73.0 | 72.6 | 977 | 7578 | 40601 | - | model | config |
DLA-34 | 576x320 | 69.9 | 70.2 | 1044 | 8869 | 44898 | - | model | config |
Notes: FairMOT DLA-34 used 2 GPUs for training and mini-batch size as 6 on each GPU, and trained for 30 epoches.
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34 | 1088x608 | 75.9 | 74.7 | 1021 | 11425 | 31475 | - | model | config |
HarDNet-85 | 1088x608 | 75.0 | 70.0 | 1050 | 11837 | 32774 | - | model | config |
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
DLA-34 | 1088x608 | 75.3 | 74.2 | 3270 | 29112 | 106749 | - | model | config |
HarDNet-85 | 1088x608 | 74.7 | 70.7 | 3210 | 29790 | 109914 | - | model | config |
Notes: FairMOT enhance used 8 GPUs for training, and the crowdhuman dataset is added to the train-set during training. For FairMOT enhance DLA-34 the batch size is 16 on each GPU,and trained for 60 epoches. For FairMOT enhance HarDNet-85 the batch size is 10 on each GPU,and trained for 30 epoches.
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
HRNetV2-W18 | 1088x608 | 71.7 | 66.6 | 1340 | 8642 | 41592 | - | model | config |
backbone | input shape | MOTA | IDF1 | IDS | FP | FN | FPS | download | config |
---|---|---|---|---|---|---|---|---|---|
HRNetV2-W18 | 1088x608 | 70.7 | 65.7 | 4281 | 22485 | 138468 | - | model | config |
HRNetV2-W18 | 864x480 | 70.3 | 65.8 | 4056 | 18927 | 144486 | - | model | config |
HRNetV2-W18 | 576x320 | 65.3 | 64.8 | 4137 | 28860 | 163017 | - | model | config |
Notes: FairMOT HRNetV2-W18 used 8 GPUs for training and mini-batch size as 4 on each GPU, and trained for 30 epoches. Only ImageNet pre-train model is used, and the optimizer adopts Momentum. The crowdhuman dataset is added to the train-set during training.
Training FairMOT on 2 GPUs with following command
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608/ --gpus 0,1 tools/train.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml
Evaluating the track performance of FairMOT on val dataset in single GPU with following commands:
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams
Notes:
The default evaluation dataset is MOT-16 Train Set. If you want to change the evaluation dataset, please refer to the following code and modify configs/datasets/mot.yml
:
EvalMOTDataset:
!MOTImageFolder
dataset_dir: dataset/mot
data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video
Tracking results will be saved in {output_dir}/mot_results/
, and every sequence has one txt file, each line of the txt file is frame,id,x1,y1,w,h,score,-1,-1,-1
, and you can set {output_dir}
by --output_dir
.
Inference a vidoe on single GPU with following command:
# inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
Notes:
Please make sure that ffmpeg is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:apt-get update && apt-get install -y ffmpeg
.
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
python deploy/pptracking/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
Notes:
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add --save_mot_txts
to save the txt result file, or --save_images
to save the visualization images.
Each line of the tracking results txt file is frame,id,x1,y1,w,h,score,-1,-1,-1
.
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
Notes:
Keypoint model export tutorial: configs/keypoint/README.md
.
@article{zhang2020fair,
title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
journal={arXiv preprint arXiv:2004.01888},
year={2020}
}