-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmontecarlo_functions.py
261 lines (232 loc) · 9.24 KB
/
montecarlo_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# In[]:
import numpy as np
from gridworld import GridWorld
# In[]:
env = GridWorld(3, 4)
state_matrix = np.zeros((3,4))
# this is the charging station
state_matrix[0, 3] = 1
# this is the staircase
state_matrix[1, 3] = 1
# this is the invalid state
state_matrix[1, 1] = -1
reward = np.full((3,4), -0.04)
# this is the staircase
reward[1, 3] = -1
# this is the charging station
reward[0, 3] = 1
# For each one of the four actions there is a probability, 0th index is UP, 1: RIGHT, 2:DOWN, 3:LEFT
# each row is probabilities for next action given the current action,
# row0 is prob. for next actions given current action is UP
# row1 is prob. for next actions given current action is RIGHT
# row2 is prob. for next actions given current action is DOWN
# row3 is prob. for next actions given current action is LEFT
# Thus its basically the prob. of taking the initial actions.
# TODO : Should check if this also forms part of learning in model-free RL
transition_matrix = np.array([
[0.8, 0.1, 0.0, 0.1],
[0.1, 0.8, 0.1, 0.0],
[0.0, 0.1, 0.8, 0.1],
[0.1, 0.0, 0.1, 0.8]
])
# Define the policy matrix
# 0=UP, 1=RIGHT, 2=DOWN, 3=LEFT, NaN=Obstacle, -1=NoAction
# This is the best policy that the robot can follow
policy_matrix = np.array([
[1, 1, 1, -1],
[0,np.NaN, 0, -1],
[0, 3, 3, 3]
])
# Set the matrices now
env.setStateMatrix(state_matrix)
env.setRewardMatrix(reward)
env.setTransitionMatrix(transition_matrix)
# Set the position of the robot in the bottom left corner.
# and return the first observation.
# Observation is the current row and column, hence the current state
observation = env.reset()
# Print the current world in the terminal.
env.render()
# In[]:
# Now we can run an episode using a for loop:
# This is just playing an episode,
# there is no learning here since the transition matrix was defined already
for _ in range(1000):
action = policy_matrix[observation[0], observation[1]]
# Now the robot should move one step in the world based on the action given.
# The action can be 0=UP, 1=RIGHT, 2=DOWN, 3=LEFT
observation, reward, done = env.step(action)
# done is True if the current state is a terminal state, i.e. either the charging station
# or the staircase. (Note that the invalid state cannot be the terminal state)
print("")
print("ACTION: " + str(action))
print("REWARD: " + str(reward))
print("DONE: " + str(done))
env.render()
if done:
break
# In[]:
# In this section we are going to use the Monte Carlo for Prediction, thus
# to find the value/utility function. This means that we already have the
# transition function with us, and we only need to estimate the values of the
# states now
def get_return(state_list, gamma):
"""
:param state_list: a list of tuples (state, reward)
:param gamma: the discount factor
:return: the return value for that state_list
"""
return_value = 0
counter = 0
for visit in state_list:
reward = visit[1]
return_value += reward * np.power(gamma, counter)
counter += 1
return return_value
# We are going to use the function get_return in the following loop in order
# to get the returns for each episode and estimate the utilities/value function
utility_matrix = np.zeros((3, 4))
running_mean_matrix = np.full((3,4), 1.0e-10)
gamma = 1
n_epochs = 50000
print_epoch = 1000
for epoch in range(n_epochs):
episode = list()
observation = env.reset(exploring_starts=False)
for _ in range(1000):
action = policy_matrix[observation[0], observation[1]]
observation, reward, done = env.step(action=action)
episode.append((observation, reward))
if done:
break
first_visit_done = np.zeros((3,4))
counter = 0
for visit in episode:
observation = visit[0]
reward = visit[1]
row = observation[0]
column = observation[1]
if first_visit_done[row, column] == 0:
return_value = get_return(episode[counter:], gamma)
running_mean_matrix[row, column] += 1
utility_matrix[row, column] += return_value
first_visit_done[row, column] = 1
counter += 1
if epoch % print_epoch == 0:
print('Utility matrix after '+str(epoch)+" iterations : ")
print(utility_matrix / running_mean_matrix)
print('Utility matrix after ' + str(n_epochs) + " iterations : ")
print(utility_matrix / running_mean_matrix)
# In[]:
# Until now we used the function called the utility function (aka value function,
# state-value function) as a way to estimate the utility (value) of a state. We
# still havent found a way to get the optimal policy
# Thus the next section is MC for control. Its estimating the Q(s,a) function or
# finding out utility of each (action, state) pair. Once we have found Q,
# the action at each state would simply be action(s) = argmax(a) Q(s, a) i.e.
# take the action that maximizes the utility of that state
gamma = 0.9
print_epoch = 10000
def get_return(state_list, gamma):
"""
:param state_list: a list of tuples (observation, state, reward)
:param gamma: the discount factor
:return: the return value for that state_list
"""
return_value = 0
counter = 0
for visit in state_list:
reward = visit[2]
return_value += reward * np.power(gamma, counter)
counter += 1
return return_value
def print_policy(p, shape):
"""Printing utility.
Print the policy actions using symbols:
^, v, <, > up, down, left, right
* terminal states
# obstacles
"""
policy_string = ""
for row in range(shape[0]):
for col in range(shape[1]):
if(p[row][col] == -1): policy_string += " * "
elif(p[row][col] == 0): policy_string += " ^ "
elif(p[row][col] == 1): policy_string += " > "
elif(p[row][col] == 2): policy_string += " v "
elif(p[row][col] == 3): policy_string += " < "
elif(np.isnan(p[row][col])): policy_string += " # "
policy_string += '\n'
print(policy_string)
def update_policy(episode_list, policy_matrix, state_action_matrix):
"""
Updates the policy in a greedy way, selecting actions which have the highest
utility for each state visited in the episode_list
:param episode_list: the tuples of states visited as (observation, state, reward)
:param policy_matrix: the policy matrix
:param state_action_matrix: the Q matrix
:return:
"""
for visit in episode_list:
observation = visit[0]
column = observation[1] + observation[0] * 4
if policy_matrix[observation[0], observation[1]] != -1:
# if its not the terminal state
policy_matrix[observation[0], observation[1]] = np.argmax(state_action_matrix[:, column])
return policy_matrix
# Random policy matrix
policy_matrix = np.random.randint(low=0, high=4, size=(3, 4)).astype(np.float32)
policy_matrix[1, 1] = np.NaN # NaN for the obstacle at (1,1)
policy_matrix[0, 3] = policy_matrix[1,3] = -1 # No action (terminal states)
# State-action matrix or the Q values (init to zeros or to random values)
Q = np.random.random_sample((4, 12))
running_mean_matrix = np.full((4, 12), 1.0e-12)
# one row of all states for each action, thus 12 columns for each row
n_epochs = 500000
for epoch in range(n_epochs):
episode_list = list()
observation = env.reset(exploring_starts=True)
# observation is the [row,col] of the current position
is_starting = True
# length of each episode is 1000
for _ in range(1000):
action = policy_matrix[observation[0], observation[1]]
# If the episode just started then it is
# necessary to choose a random action (exploring starts)
# This condition assures to satisfy the exploring starts. T
if is_starting:
action = np.random.randint(0, 4)
is_starting = False
# Move one step and get a new observation and the reward
new_observation, reward, done = env.step(action)
episode_list.append((observation, action, reward))
observation = new_observation
if done:
break
# This cycle is the implementation of First-Visit MC.
first_visit_done = np.zeros((4, 12))
counter = 0
# For each state-action stored in the episode list it checks if
# it is the first visit and then estimates the return.
# This is the Evaluation step of the GPI.
for visit in episode_list:
observation = visit[0]
action = visit[1]
column = observation[1] + observation[0] * 4
row = int(action)
if first_visit_done[row, column] == 0:
return_value = get_return(episode_list[counter:], gamma)
running_mean_matrix[row, column] += 1
Q[row, column] += return_value
first_visit_done[row, column] = 1
counter += 1
# Policy update (Improvement)
policy_matrix = update_policy(episode_list, policy_matrix, Q / running_mean_matrix)
if epoch % print_epoch == 0:
print("State-Action matrix after " + str(epoch) + " iterations:")
print(Q / running_mean_matrix)
print("Policy matrix after " + str(epoch + 1) + " iterations:")
print(policy_matrix)
print_policy(policy_matrix, (3,4))
print("Utility matrix after " + str(n_epochs) + " iterations:")
print(Q / running_mean_matrix)