-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
executable file
·107 lines (88 loc) · 3.04 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import numpy as np
import time
import os
from six.moves import cPickle
import opts
import models
from dataloader import *
from dataloaderraw import *
import eval_utils
import argparse
import misc.utils as utils
import torch
# Reproducibility
np.random.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed_all(42)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Input arguments and options
parser = argparse.ArgumentParser()
# Input paths
parser.add_argument('--model', type=str, default='',
help='path to model to evaluate')
parser.add_argument('--cnn_model', type=str, default='resnet101',
help='resnet101, resnet152')
parser.add_argument('--infos_path', type=str, default='',
help='path to infos to evaluate')
parser.add_argument('--out_file_path', type=str, default = '')
opts.add_eval_options(parser)
opts.add_diversity_opts(parser)
opt = parser.parse_args()
# assert len(opt.out_file_path) != 0
print(opt)
# Load infos
with open(opt.infos_path, 'rb') as f:
infos = utils.pickle_load(f)
# override and collect parameters
replace = ['input_fc_dir', 'input_att_dir', 'input_box_dir', 'input_label_h5', 'input_json', 'batch_size', 'id']
ignore = ['start_from']
for k in vars(infos['opt']).keys():
if k in replace:
setattr(opt, k, getattr(opt, k) or getattr(infos['opt'], k, ''))
elif k not in ignore:
if not k in vars(opt):
vars(opt).update({k: vars(infos['opt'])[k]}) # copy over options from model
vocab = infos['vocab'] # ix -> word mapping
# Setup the model
opt.vocab = vocab
model = models.setup(opt)
del opt.vocab
model.load_state_dict(torch.load(opt.model))
model.cuda()
model.eval()
crit = utils.LanguageModelCriterion()
print(model.parameters)
# assert False
# Create the Data Loader instance
# print(opt.image_folder)
#if len(opt.image_folder) == 0:
print(opt)
loader = DataLoader(opt)
#else:
# assert False
#else:
# loader = DataLoaderRaw({'folder_path': opt.image_folder,
# 'coco_json': opt.coco_json,
# 'batch_size': opt.batch_size,
# 'cnn_model': opt.cnn_model})
# When eval using provided pretrained model, the vocab may be different from what you have in your cocotalk.json
# So make sure to use the vocab in infos file.
loader.ix_to_word = infos['vocab']
# Set sample options
loss, split_predictions, lang_stats = eval_utils.eval_split(model, crit, loader, vars(opt))
print('loss: ', loss)
if lang_stats:
print(lang_stats['CIDEr'])
if opt.post_processing == 1:
for i in range(len(split_predictions)):
split_predictions[i]['caption'] = utils.post_processing_for_conceptual(split_predictions[i]['caption'])
if opt.dump_json == 1:
# dump the json
# json.dump(split_predictions, open('vis/vis.json', 'w'))
print("Dumping results")
json.dump(split_predictions, open(opt.out_file_path + '_' + opt.split + '.json', 'w'))