-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlotter_PPsurrogs_tests.R
152 lines (106 loc) · 5.5 KB
/
Plotter_PPsurrogs_tests.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Plot to check the pairwise Pearson correlation from real data and surrogs are close enough or not?
library(corrplot)
getqs<-function(x){
qs<-quantile(x,c(0.025,0.25,0.5,0.75,0.975))
ql<-unname(qs[1]) #2.5% quantile
qm<-unname(qs[3]) #50% quantile
qh<-unname(qs[5]) #97.5% quantile
return(c(ql,qm,qh))
}
# Args:
# m: a matrix with common and pseudo sp time series along each column
# ans: a list which is the output from PPsurrogs_tests function
# resloc: folder path to save the plots
# tag_legend: a character string of length 3 for comparison hist plot
Plotter_PPsurrogs_tests<-function(m,ans,resloc,tag_legend){
cm<-cor(m)
s1<-ans$cor_surrogs
cs<-array(numeric(),c(nrow(cm),ncol(cm),0)) #initialize
for(i in c(1:nrow(cm))){
temp<-cor(s1[,,i])
cs<-abind::abind(cs,temp) # array with correlation for surrogate values
}
#dim(cs)
cm_low<-cm_mid<-cm_up<-cm # initialize
for(i in 1:nrow(cs)){
for(j in 1:ncol(cs)){
mm<-cs[i,j,]
tempo<-getqs(mm)
cm_low[i,j]<-tempo[1]
cm_mid[i,j]<-tempo[2]
cm_up[i,j]<-tempo[3]
}
}
nspair<-0.5*nrow(cm)*(nrow(cm)-1) # number of unique species pair
my_dat<-data.frame(real_cor=NA*numeric(nspair),
surrogs_cor_lowCI=NA*numeric(nspair),
surrogs_cor_midCI=NA*numeric(nspair),
surrogs_cor_upCI=NA*numeric(nspair),
color_code=NA*numeric(nspair))
my_dat$real_cor<-cm[lower.tri(cm)]
my_dat$surrogs_cor_lowCI<-cm_low[lower.tri(cm_low)]
my_dat$surrogs_cor_midCI<-cm_mid[lower.tri(cm_mid)]
my_dat$surrogs_cor_upCI<-cm_up[lower.tri(cm_up)]
id<-which(my_dat$surrogs_cor_lowCI>my_dat$real_cor | my_dat$surrogs_cor_upCI<my_dat$real_cor)
my_dat$color_code<-rgb(0,0,0,0.3) #black
my_dat$color_code[id]<-rgb(1,0,0,0.6) #red
pdf(paste(resloc,"./comparison_pairwisecor_PPsurrogs.pdf",sep=""),height=5,width=5)
op<-par(mar=c(5,5,1,1),mgp=c(3,1,0))
plot(my_dat$real_cor,my_dat$surrogs_cor_midCI,
xlim=c(-1,1),ylim=c(-1,1),
xlab="pairwise Pearson correlation from real data",ylab="pairwise Pearson correlation from surrogates",
cex=0.5,pch=20,col=my_dat$color_code)
segments(x0=-1,y0=-1,x1=1,y1=1,lty="dashed")
segments(x0=my_dat$real_cor,y0=my_dat$surrogs_cor_lowCI,
x1=my_dat$real_cor,y1=my_dat$surrogs_cor_upCI,col=my_dat$color_code)
par(op)
dev.off()
#-----------------------------------------------------------------------------------------------
#col1 <- colorRampPalette(c("blue","white","red"))
#pdf(paste(resloc,"./compare_pairwisecor_PPsurrogs.pdf",sep=""),width=15,height=15)
#op<-par(mar=c(0.5,0.5,0.5,0.5))
#rownames(cm)<-colnames(cm)<-paste("sp",c(1:nrow(cm)))
#diag(cm)<-diag(cm_low)<-diag(cm_high)<-NA
#corrplot(cm, low = cm_low, upp = cm_high, type='lower',diag=F, plotC = "rect", col=col1(100),
# tl.cex=2,tl.col = "black",tl.offset = 1,tl.pos="ld",addgrid.col = "grey",
# cl.cex = 2,cl.length=7,tl.srt=20,
# cl.align.text = "l",cl.ratio = 0.1)
#par(op)
#dev.off()
#-----------------------------------------------------------------------------------------------
pdf(paste(resloc,"./comparison_histplot_PPsurrogs.pdf",sep=""),height=7,width=9)
op<-par(mfrow=c(3,1),mar=c(9,9,3,4),mgp=c(5,1,0))
xlm<-sort(c(range(ans$tot_cov_surrogs),ans$tot_cov_real,0))
pval<-sum(ans$tot_cov_surrogs<ans$tot_cov_real)/length(ans$tot_cov_surrogs)
hist(ans$tot_cov_surrogs,col="grey",border=F,breaks=1000,xaxt="n",cex.axis=1.6,cex.main=2,
xlab="Total pairwise-covariance from surrogates",cex.lab=2.4,main=paste("p = ",pval))
legend("topleft", tag_legend[1], bty="n", cex=3)
axis(side=1, at=round(xlm,2),cex.axis=1.6)
abline(v=ans$tot_cov_real,col="black") # actual skw from real data
xlm<-sort(c(range(ans$var_aggr_sp_surrogs),ans$var_aggr_sp_real))
pval<-sum(ans$var_aggr_sp_surrogs<ans$var_aggr_sp_real)/length(ans$var_aggr_sp_surrogs)
hist(ans$var_aggr_sp_surrogs,col="grey",border=F,breaks=1000,xaxt="n",cex.axis=1.6,cex.main=2,
xlab="Variance of aggregated species time-series from surrogates",cex.lab=2.4,main=paste("p = ",pval))
legend("topleft", tag_legend[2], bty="n", cex=3)
axis(side=1, at=round(xlm,2),cex.axis=1.6)
abline(v=ans$var_aggr_sp_real,col="black") # actual skw from real data
xlm<-sort(c(range(ans$vr_surrogs),ans$vr_real,1))
pval<-sum(ans$vr_surrogs<ans$vr_real)/length(ans$vr_surrogs)
hist(ans$vr_surrogs,col="grey",border=F,breaks=1000,xaxt="n",cex.axis=1.6,cex.main=2,
xlab="Variance ratio from surrogates",cex.lab=2.4,main=paste("p = ",pval))
legend("topleft", tag_legend[3], bty="n", cex=3)
axis(side=1, at=round(xlm,2),cex.axis=1.6)
abline(v=ans$vr_real,col="black") # actual skw from real data
par(op)
dev.off()
}
# call the function for Hays
#m<-readRDS("./Results/hays_results/skewness_results/ts_mat_CP_hays.RDS")
#ans<-readRDS("./Results/hays_results/skewness_results/pp_surrogs_hays_CP/PPsurrogs_tests_with_HaysSurrogates.RDS")
#resloc<-"./Results/hays_results/skewness_results/pp_surrogs_hays_CP/"
#Plotter_PPsurrogs_tests(m=m,ans=ans,resloc=resloc,tag_legend = c("(A)","(C)","(E)"))
# call the function for KNZ
#m<-readRDS("./Results/knz_results/skewness_results/ts_CP_knz_soiltype_t.RDS")
#ans<-readRDS("./Results/knz_results/skewness_results/pp_surrogs_knz_t_CP/PPsurrogs_tests_with_KNZtSurrogates.RDS")
#resloc<-"./Results/knz_results/skewness_results/pp_surrogs_knz_t_CP/"
#Plotter_PPsurrogs_tests(m=m,ans=ans,resloc=resloc,tag_legend = c("(B)","(D)","(F)"))