-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOurBiCopSelect.R
233 lines (208 loc) · 9.53 KB
/
OurBiCopSelect.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
library(VineCopula)
source("MyBiCopGofTest.R")
#This function takes a sample from a bivariate distribution
#consisting of values between 0 and 1 and:
#a) tests for independence and for positive correlation
#b) if independence can be rejected and correlation is positive, it
# fit a series of bivariate copula models and provides fitted
# parameters, log likelihood, AIC and BIC for each, and other info
#c) for the best copula model (by AIC or BIC), the function tests
# for the goodness of fit in two ways
#d) optionally tests for the goodness of fit of the normal copula
#
#The function is a re-implementation of the BiCopSelect function
#in the VineCopula package, re-done to ensure we could understand and
#control what we were getting.
#
#Args
#u1, u2 The sample. These can be obtained, for instance,
# by applying pobs in the VineCopula package to
# samples from any bivariate distribution or to
# any bivariate dataset
#level Significance level to be used for the independence
# test
#families The copula families to use in b above. Uses codes
# as specified in the docs for BiCopEst in the
# VineCopula package.
#AICBIC Which one to use for model selection.
#numBSsmall
#pthresh
#numBSlarge Number of bootstraps to use for goodness of fit.
# First, tests are run with numBSsmall, and if p-values
# are ever less than pthresh, tests are re-run with
# numBSlarge. Watch out, large values can mean long
# run times.
#gofnormal T/F on whether a goodness of fit test for the normal
# copula should be run.
#status T/F - should status updates on the run be printed?
#
#Output: a list with these elements
#IndepTestRes p-value result of the independence test
#InfCritRes data frame of results from the information-
# criterion-based model fitting and selection
#GofRes_CvM p-value result for Cramer-von-Mises-based
# goodness of fit test for top-ranking copula
# by AIC or BIC
#GofRes_KS Same, but using a Kolmogorov-Smirnov-based
# test. See docs for MyBiCopGofTest in the
# VineCopula package
#GofRes_CvM_stat
#GofRes_KS_stat Statistics for the tests
#Numboot Number of bootstraps (numBSsmall/large)
#Numboot_success Number of succeeded bootstraps out of Numboot
#GofRes_Normal_CvM
#GofRes_Normal_KS
#GofRes_Normal_CvM_stat
#GofRes_Normal_KS_stat Same as above, but for testing the goodness of fit of the normal copula.
#Numboot_Normal Number of bootstraps for the normal test (numBSsmall/large)
#Numboot_success_Normal Number of succeeded bootstraps out of Numboot_Normal
#relLTdep_AICw Model-averaged lower-tail dependence statistic (AIC-weightage based)
#relUTdep_AICw Model-averaged upper-tail dependence statistic (AIC-weightage based)
#relLTdep_BICw Model-averaged lower-tail dependence statistic (BIC-weightage based)
#relUTdep_BICw Model-averaged upper-tail dependence statistic (BIC-weightage based)
OurBiCopSelect<-function(u1,u2,families,level=0.05,AICBIC="AIC",
numBSsmall=100,pthresh=0.2,numBSlarge=1000,
gofnormal=TRUE,status=TRUE)
{
#first, test for independence (H0 is independence)
if (status) {cat(paste("Starting independence test: ",Sys.time(),"\n"))}
IndepTestRes<-BiCopIndTest(u1,u2)$p.value
if (status) {cat(paste("Done:",Sys.time(),"\n"))}
#if independence rejected and tau>0, then get AICs for copulas and do
#goodness of fit stuff
if (IndepTestRes<level){
# print("Entering main work if statement in BiCopGofTest")
#AIC/BIC stuff
if (status) {cat(paste("Starting A/BIC model selection: ",Sys.time(),"\n"))}
InfCritRes<-data.frame(copcode=families,
copname=BiCopName(families, short=TRUE),
par1=NA,
par2=NA,
logLik=NA,
AIC=NA,
BIC=NA,
LTdep=NA,
UTdep=NA,
AICw=NA,
BICw=NA)
for (counter in 1:(dim(InfCritRes)[1])){
# print(paste0("About to call BiCopEst for counter=",counter))
tres<-BiCopEst(u1=u1,u2=u2,family=InfCritRes[counter,1])
InfCritRes$par1[counter]<-tres$par
InfCritRes$par2[counter]<-tres$par2
InfCritRes$logLik[counter]<-tres$logLik
InfCritRes$AIC[counter]<-tres$AIC
InfCritRes$BIC[counter]<-tres$BIC
InfCritRes$LTdep[counter]<-tres$taildep$lower
InfCritRes$UTdep[counter]<-tres$taildep$upper
}
for(counter in 1:(dim(InfCritRes)[1])){
InfCritRes$AICw[counter]<-exp(-0.5*(InfCritRes$AIC[counter]-min(InfCritRes$AIC,na.rm=T)))
InfCritRes$BICw[counter]<-exp(-0.5*(InfCritRes$BIC[counter]-min(InfCritRes$BIC,na.rm=T)))
}
InfCritRes$AICw<-InfCritRes$AICw/sum(InfCritRes$AICw,na.rm=T)
InfCritRes$BICw<-InfCritRes$BICw/sum(InfCritRes$BICw,na.rm=T)
# check : sum(InfCritRes$AICw)=1, sum(InfCritRes$BICw)=1
relLTdep_AICw<-sum((InfCritRes$LTdep*InfCritRes$AICw)/sum(InfCritRes$AICw,na.rm=T),na.rm=T)
relUTdep_AICw<-sum((InfCritRes$UTdep*InfCritRes$AICw)/sum(InfCritRes$AICw,na.rm=T),na.rm=T)
relLTdep_BICw<-sum((InfCritRes$LTdep*InfCritRes$BICw)/sum(InfCritRes$BICw,na.rm=T),na.rm=T)
relUTdep_BICw<-sum((InfCritRes$UTdep*InfCritRes$BICw)/sum(InfCritRes$BICw,na.rm=T),na.rm=T)
if (status) {cat(paste("Done: ",Sys.time(),"\n"))}
#g.o.f. stuff for the A/BIC-best copula
if (status) {cat(paste("Starting gof for A/BIC-best copula: ",Sys.time(),"\n"))}
if (AICBIC=="AIC"){
ind<-which.min(InfCritRes$AIC)
}
if (AICBIC=="BIC"){
ind<-which.min(InfCritRes$BIC)
}
if (AICBIC!="AIC" && AICBIC!="BIC"){
stop("Error in OurBiCopSelect: incorrect AICBIC")
}
Numboot<-numBSsmall
#print("About to call MyBiCopGofTest")
gres<-MyBiCopGofTest(u1=u1,u2=u2,family=InfCritRes$copcode[ind],
method="kendall",B=numBSsmall)
# print("Finished calling MyBiCopGofTest")
GofRes_CvM<-gres$p.value.CvM
GofRes_KS<-gres$p.value.KS
Numboot_success<-gres$B_success
if (GofRes_CvM<pthresh || GofRes_KS<pthresh)
{
Numboot<-numBSlarge
# print("About to call MyBiCopGofTest second time")
gres<-MyBiCopGofTest(u1=u1,u2=u2,family=InfCritRes$copcode[ind],
method="kendall",B=numBSlarge)
# print("Finished calling MyBiCopGofTest second time")
GofRes_CvM<-gres$p.value.CvM
GofRes_KS<-gres$p.value.KS
Numboot_success<-gres$B_success
}
GofRes_CvM_stat<-gres$statistic.CvM
GofRes_KS_stat<-gres$statistic.KS
if (status) {cat(paste("Done: ",Sys.time(),"\n"))}
#g.o.f. stuff for the normal copula
if(gofnormal==T){
if (status) {cat(paste("Starting gof for normal copula: ",Sys.time(),"\n"))}
Numboot_Normal<-numBSsmall
gres_normal_cop<-MyBiCopGofTest(u1=u1,u2=u2,family=1,method="kendall",B=numBSsmall)
GofRes_Normal_CvM<-gres_normal_cop$p.value.CvM
GofRes_Normal_KS<-gres_normal_cop$p.value.KS
Numboot_success_Normal<-gres_normal_cop$B_success
if (GofRes_Normal_CvM<pthresh || GofRes_Normal_KS<pthresh)
{
Numboot_Normal<-numBSlarge
gres_normal_cop<-MyBiCopGofTest(u1=u1,u2=u2,family=1,method="kendall",B=numBSlarge)
GofRes_Normal_CvM<-gres_normal_cop$p.value.CvM
GofRes_Normal_KS<-gres_normal_cop$p.value.KS
}
GofRes_Normal_CvM_stat<-gres_normal_cop$statistic.CvM
GofRes_Normal_KS_stat<-gres_normal_cop$statistic.KS
Numboot_success_Normal<-gres_normal_cop$B_success
if (status) {cat(paste("Done: ",Sys.time(),"\n"))}
}else{
GofRes_Normal_CvM<-NA
GofRes_Normal_KS<-NA
GofRes_Normal_CvM_stat<-NA
GofRes_Normal_KS_stat<-NA
Numboot_Normal<-NA
Numboot_success_Normal<-NA
}
}else{ # this is for indep.
InfCritRes<-NA
GofRes_CvM<-NA
GofRes_KS<-NA
GofRes_CvM_stat<-NA
GofRes_KS_stat<-NA
Numboot<-NA
Numboot_success<-NA
GofRes_Normal_CvM<-NA
GofRes_Normal_KS<-NA
GofRes_Normal_CvM_stat<-NA
GofRes_Normal_KS_stat<-NA
Numboot_Normal<-NA
Numboot_success_Normal<-NA
relLTdep_AICw<-NA
relUTdep_AICw<-NA
relLTdep_BICw<-NA
relUTdep_BICw<-NA
}
return(list(IndepTestRes=IndepTestRes,
InfCritRes=InfCritRes,
GofRes_CvM=GofRes_CvM,
GofRes_KS=GofRes_KS,
GofRes_CvM_stat=GofRes_CvM_stat,
GofRes_KS_stat=GofRes_KS_stat,
Numboot=Numboot,
Numboot_success=Numboot_success,
GofRes_Normal_CvM=GofRes_Normal_CvM,
GofRes_Normal_KS=GofRes_Normal_KS,
GofRes_Normal_CvM_stat=GofRes_Normal_CvM_stat,
GofRes_Normal_KS_stat=GofRes_Normal_KS_stat,
Numboot_Normal=Numboot_Normal,
Numboot_success_Normal= Numboot_success_Normal,
relLTdep_AICw=relLTdep_AICw,
relUTdep_AICw=relUTdep_AICw,
relLTdep_BICw=relLTdep_BICw,
relUTdep_BICw=relUTdep_BICw))
}