-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNonParamStat.R
179 lines (135 loc) · 5.83 KB
/
NonParamStat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# ------------------------------------------------------------------------------------------------
# THIS CODE IS WRITTEN TO TEST NON-PARAMETRIC STATS based on partial Spearmn correlation (Cor stat)
# FOR ANY TWO POSITIVELY CORRELATED SPECIES PAIR
#--------------------------------------------------------------------------------------------------
source("CopulaFunctions.R")
source("vivj_matrix.R")
source("good_splist.R")
#---------------------------------------------------------------
#Processing function for a copula approach to synchrony
#
#---Input---------
# m : output matrix from vivj_matrix.R
# nbin : number of bins used to get npa stats
#------Output - A list with these elements-------------------------------
# ranks : A dataframe with 2 columns, one for
# ds1 and one for ds2, corresponding to samples from the copula.
# spear : Spearman correlation (single number)
# kend : Kendall correlation (single number)
# Corl,Coru : covariance based statistics
copsync<-function(m,nbin){
vi<-m[,1]
vj<-m[,2]
#get mean and variance
vi_mean<-mean(vi)
vj_mean<-mean(vj)
var_vi<-var(vi)
var_vj<-var(vj)
spear<-NA
kend<-NA
Corl<-NA
Coru<-NA
if (length(vi)>0){
#get spear
spear<-cor(vi,vj, method ="spearman")
#get kend
kend<-cor(vi, vj, method ="kendall")
#----------------------------------------------------STATISTICS :2 ---------------------------------------------------------
#get Corl, Coru (covariance based new stat)
# if(npa_stats=="cor"){
stat2<-CorlCoru(vi,vj,nbin=nbin)
Corl<-stat2[1]
Coru<-stat2[2]
# }
}
return(list(ranks=data.frame(Rki=vi,Rkj=vj),
spear=spear,kend=kend,
Corl=Corl,Coru=Coru))
}
#---------------------------------------------------------------------------------------------------------------------------
#Calling the above on all pairs of several time series and returning npa stats
#-------------Input---------------------------------
# d_allsp : A list of data frames, each with columns Year and Dat
# The years are assumed to be sequential and all included,
# though there may be NAs in Dat and the years may not
# be all the same for ds1 and ds2.
# loc : location number
# pfname : Filename (without extension) prepended to plot files saved.
# good_sp : a vector of chosen species
# nbin : number of bins used to compute npa stats
# include_indep : logical (T/ F), whether to carry out independence test or not
#----------Output - A list of length 1 with these elements-----------------
# spear A matrix of spearman results, length(d) by length(d) (significantly -ve correlated cells
# had +ve correlation,
# as we take one of timeseries reversed but can track with posnN indices)
# kend A matrix of kendall results, length(d) by length(d)
# Corl A matrix of Cl results, length(d) by length(d)
# Coru A matrix of Cu results, length(d) by length(d)
#posnI A matrix for indices of indep. sp. pair
#posnN A matrix for indices of negatively correlated sp. pair
#corval A matrix of spearman results but differ with spear in the sense that it contains all +ve or -ve Spearman
# correlation values, whether significant or not. And also the true correlation. (same as 'corval' output
# from vivj_matrix.R)
multcall<-function(d_allsp,loc,resloc,good_sp,nbin,include_indep){
lensp<-length(good_sp)
#first initialize result receptacles for the output
spear<-matrix(NA,lensp,lensp)
colnames(spear) <- paste("sp",good_sp, sep="")
rownames(spear) <-paste("sp",good_sp, sep="")
kend<-matrix(NA,lensp,lensp)
colnames(kend) <- colnames(spear)
rownames(kend) <-rownames(spear)
Corl<-matrix(NA,lensp,lensp)
colnames(Corl) <- colnames(spear)
rownames(Corl) <-rownames(spear)
Coru<-matrix(NA,lensp,lensp)
colnames(Coru) <- colnames(spear)
rownames(Coru) <-rownames(spear)
corval<-spear
pval_BiCopIndep<-spear
#------------------- PLOT : copula_for_all_sp pair ----------------
pdf(paste(resloc,"AllCops_nbin_",nbin,".pdf",sep=""),width=6*lensp, height=6*lensp)
op<-par(mfrow=c(lensp,lensp),mar=c(3,3,3,3), mgp=c(1.5,0.5,0))
for (ii in c(1:lensp)){
for (jj in c(1:lensp)){
#compute results
i<-good_sp[ii]
j<-good_sp[jj]
#cat("i,j",i,j,"\n")
#if(i!=j){
ms<-vivj_matrix(d_allsp=d_allsp,loc=loc,i=i,j=j,level=0.05,ploton=T,onbounds=F,lb=NA,ub=NA,include_indep=include_indep)
m<-ms$mat
corval[ii,jj]<-ms$corval
pval_BiCopIndep[ii,jj]<-ms$IndepTestRes
thisres<-copsync(m,nbin=nbin)
spear[ii,jj]<-thisres$spear
kend[ii,jj]<-thisres$kend
Corl[ii,jj]<-thisres$Corl
Coru[ii,jj]<-thisres$Coru
plot(thisres$ranks$Rki,thisres$ranks$Rkj,type='p',col=rgb(0,0,0,.2),pch=19,xlim=c(0,1),
ylim=c(0,1),xlab=expression(u[i]),ylab=expression(v[j]),cex.lab=2)
mtext(paste0("[ i, j ] ="," [",i,",",j,"] ", ","," n=",dim(thisres$ranks)[1]),
side = 3, line=0.15, adj=0.5, col="red")
#}
}
}
par(op)
dev.off()
#-------------------------------------------------------------------------
if(include_indep==T){
level<-0.05
posnI<-which(pval_BiCopIndep>=level, arr.ind = T) #indices of indep. pair
posnN<-which(pval_BiCopIndep<level & corval <0, arr.ind = T) #indices of significantly neg. correlated pair
}else{
posnI<-NA
posnN<- which(corval <0, arr.ind = T)
}
#if(npa_stats=="cor"){
res<-list(spear=spear,kend=kend,
Corl=Corl,Coru=Coru,
posnI=posnI,
posnN=posnN,
corval=corval)
#}
return(res)
}