The llamastack/distribution-tgi
distribution consists of the following provider configurations.
API | Inference | Agents | Memory | Safety | Telemetry |
---|---|---|---|---|---|
Provider(s) | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
Note
This assumes you have access to GPU to start a TGI server with access to your GPU.
$ cd distributions/tgi/gpu
$ ls
compose.yaml tgi-run.yaml
$ docker compose up
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
To kill the server
docker compose down
Note
This assumes you have an hosted endpoint compatible with TGI server.
$ cd distributions/tgi/cpu
$ ls
compose.yaml run.yaml
$ docker compose up
Replace <ENTER_YOUR_TGI_HOSTED_ENDPOINT> in run.yaml
file with your TGI endpoint.
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: <ENTER_YOUR_TGI_HOSTED_ENDPOINT>
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
- Please check the TGI Getting Started Guide to get a TGI endpoint.
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
Make sure in you run.yaml
file, you inference provider is pointing to the correct TGI server endpoint. E.g.
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
Via Conda
llama stack build --template tgi --image-type conda
# -- start a TGI server endpoint
llama stack run ./gpu/run.yaml
To serve a new model with tgi
, change the docker command flag --model-id <model-to-serve>
.
This can be done by edit the command
args in compose.yaml
. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.2-1B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
or by changing the docker run command's --model-id
flag
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.2-1B-Instruct --port 5009
In run.yaml
, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009