forked from jorge-pessoa/pytorch-msssim
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmax_ssim.py
69 lines (55 loc) · 1.99 KB
/
max_ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from pytorch_msssim import msssim, ssim
import torch
from torch import optim
from scipy.misc import imread
import numpy as np
display = True
metric = 'MSSSIM' # MSSSIM or SSIM
def post_process(img):
img = img.detach().cpu().numpy()
img = np.transpose(np.squeeze(img, axis=0), (1, 2, 0))
img = np.squeeze(img) # works if grayscale
return img
# Preprocessing
npImg1 = imread('einstein.png')
if len(npImg1.shape) == 2: # if no channel dimension exists
npImg1 = np.expand_dims(npImg1, axis=-1)
npImg1 = np.transpose(npImg1, (2, 0, 1)) # adjust dimensions for pytorch
npImg1 = np.expand_dims(npImg1, axis=0) # add batch dimension
npImg1 = npImg1 / 255.0 # normalize values between 0-1
npImg1 = npImg1.astype(np.float32) # adjust type
img1 = torch.from_numpy(npImg1)
img2 = torch.rand(img1.size())
img2 = torch.nn.functional.sigmoid(img2) # use sigmoid to map values between 0-1
if torch.cuda.is_available():
img1 = img1.cuda()
img2 = img2.cuda()
img1.requires_grad = False
img2.requires_grad = True
loss_func = msssim if metric == 'MSSSIM' else ssim
value = loss_func(img1, img2)
print("Initial {:s}: {:f}".format(metric, value.item()))
optimizer = optim.Adam([img2], lr=0.01)
# MSSSIM yields higher values for worse results, because noise is removed in scales with lower resolutions
threshold = 0.999 if metric == 'MSSSIM' else 0.9
while value < threshold:
optimizer.zero_grad()
msssim_out = -loss_func(img1, img2)
value = -msssim_out.item()
print(value)
msssim_out.backward()
optimizer.step()
if display:
# Post processing
img1np = post_process(img1)
img2 = torch.nn.functional.sigmoid(img2)
img2np = post_process(img2)
import matplotlib.pyplot as plt
cmap = 'gray' if len(img1np.shape) == 2 else None
plt.subplot(1, 2, 1)
plt.imshow(img1np, cmap=cmap)
plt.title('Original')
plt.subplot(1, 2, 2)
plt.imshow(img2np, cmap=cmap)
plt.title('Generated, {:s}: {:.3f}'.format(metric, value))
plt.show()