forked from THU-KEG/EAkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
semi_utils.py
269 lines (238 loc) · 9.64 KB
/
semi_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# --- Code from TransEdge (https://github.com/nju-websoft/TransEdge) ---
"""
Adopted from TransEdge (https://github.com/nju-websoft/TransEdge), which is
Adopted from BootEA (https://github.com/nju-websoft/BootEA)
"""
import time
import itertools
import gc
import igraph as ig
# currently unable to install Graph-tool: mwgm_graph_tool
import numpy as np
def boot_update_triple(A, B, triple):
assert len(A) == len(B)
new_triple = []
h_rt, t_hr = {}, {}
for (h, r, t) in triple:
if h not in h_rt:
h_rt[h] = set()
h_rt[h].add((r, t))
if t not in t_hr:
t_hr[t] = set()
t_hr[t].add((h, r))
for i in range(len(A)):
if A[i] in h_rt:
for (r, t) in h_rt[A[i]]:
new_triple.append((B[i], r, t))
if A[i] in t_hr:
for (h, r) in t_hr[A[i]]:
new_triple.append((h, r, B[i]))
if B[i] in h_rt:
for (r, t) in h_rt[B[i]]:
new_triple.append((A[i], r, t))
if B[i] in t_hr:
for (h, r) in t_hr[B[i]]:
new_triple.append((h, r, A[i]))
new_triple = list(set(new_triple))
return new_triple
def bootstrapping(ref_sim_mat, ref_ent1, ref_ent2, labeled_alignment, th, top_k, is_edit=False):
n = ref_sim_mat.shape[0]
curr_labeled_alignment = find_potential_alignment(ref_sim_mat, th, top_k, n)
if is_edit:
if curr_labeled_alignment is not None:
labeled_alignment = update_labeled_alignment(labeled_alignment, curr_labeled_alignment, ref_sim_mat, n)
labeled_alignment = update_labeled_alignment_label(labeled_alignment, ref_sim_mat, n)
del curr_labeled_alignment
alignment = labeled_alignment
else:
alignment = curr_labeled_alignment
if alignment is not None:
ents1 = [ref_ent1[pair[0]] for pair in alignment]
ents2 = [ref_ent2[pair[1]] for pair in alignment]
else:
ents1, ents2 = None, None
del ref_sim_mat
gc.collect()
return alignment, ents1, ents2
def filter_mat(mat, threshold, greater=True, equal=False):
if greater and equal:
x, y = np.where(mat >= threshold)
elif greater and not equal:
x, y = np.where(mat > threshold)
elif not greater and equal:
x, y = np.where(mat <= threshold)
else:
x, y = np.where(mat < threshold)
return set(zip(x, y))
def check_alignment(aligned_pairs, all_n, context="", is_cal=True):
if aligned_pairs is None or len(aligned_pairs) == 0:
print("{}, Empty aligned pairs".format(context))
return
num = 0
for x, y in aligned_pairs:
if x == y:
num += 1
print("{}, right alignment: {}/{}={:.3f}".format(context, num, len(aligned_pairs), num / len(aligned_pairs)))
if is_cal:
precision = round(num / len(aligned_pairs), 6)
recall = round(num / all_n, 6)
if recall > 1.0:
recall = round(num / all_n, 6)
f1 = round(2 * precision * recall / (precision + recall), 6)
print("precision={}, recall={}, f1={}".format(precision, recall, f1))
def search_nearest_k(sim_mat, k):
if k == 0:
return None
neighbors = set()
ref_num = sim_mat.shape[0]
for i in range(ref_num):
rank = np.argpartition(-sim_mat[i, :], k)
pairs = [j for j in itertools.product([i], rank[0:k])]
neighbors |= set(pairs)
# del rank
assert len(neighbors) == ref_num * k
return neighbors
def mwgm(pairs, sim_mat, func):
return func(pairs, sim_mat)
def mwgm_graph_tool(pairs, sim_mat):
from graph_tool.all import Graph, max_cardinality_matching
if not isinstance(pairs, list):
pairs = list(pairs)
g = Graph()
weight_map = g.new_edge_property("float")
nodes_dict1 = dict()
nodes_dict2 = dict()
edges = list()
for x, y in pairs:
if x not in nodes_dict1.keys():
n1 = g.add_vertex()
nodes_dict1[x] = n1
if y not in nodes_dict2.keys():
n2 = g.add_vertex()
nodes_dict2[y] = n2
n1 = nodes_dict1.get(x)
n2 = nodes_dict2.get(y)
e = g.add_edge(n1, n2)
edges.append(e)
weight_map[g.edge(n1, n2)] = sim_mat[x, y]
print("graph via graph_tool", g)
res = max_cardinality_matching(g, heuristic=True, weight=weight_map, minimize=False)
edge_index = np.where(res.get_array() == 1)[0].tolist()
matched_pairs = set()
for index in edge_index:
matched_pairs.add(pairs[index])
return matched_pairs
def mwgm_igraph(pairs, sim_mat):
if not isinstance(pairs, list):
pairs = list(pairs)
index_id_dic1, index_id_dic2 = dict(), dict()
index1 = set([pair[0] for pair in pairs])
index2 = set([pair[1] for pair in pairs])
for index in index1:
index_id_dic1[index] = len(index_id_dic1)
off = len(index_id_dic1)
for index in index2:
index_id_dic2[index] = len(index_id_dic2) + off
assert len(index1) == len(index_id_dic1)
assert len(index2) == len(index_id_dic2)
edge_list = [(index_id_dic1[x], index_id_dic2[y]) for (x, y) in pairs]
weight_list = [sim_mat[x, y] for (x, y) in pairs]
leda_graph = ig.Graph(edge_list)
leda_graph.vs["type"] = [0] * len(index1) + [1] * len(index2)
leda_graph.es['weight'] = weight_list
res = leda_graph.maximum_bipartite_matching(weights=leda_graph.es['weight'])
print(res)
selected_index = [e.index for e in res.edges()]
matched_pairs = set()
for index in selected_index:
matched_pairs.add(pairs[index])
return matched_pairs
def find_potential_alignment(sim_mat, sim_th, k, total_n):
t = time.time()
potential_aligned_pairs = generate_alignment(sim_mat, sim_th, k, total_n)
if potential_aligned_pairs is None or len(potential_aligned_pairs) == 0:
return None
t1 = time.time()
# if P.heuristic:
# selected_pairs = mwgm(potential_aligned_pairs, sim_mat, mwgm_graph_tool)
# else:
# selected_pairs = mwgm(potential_aligned_pairs, sim_mat, mwgm_igraph)
# selected_pairs = mwgm(potential_aligned_pairs, sim_mat, mwgm_graph_tool)
selected_pairs = mwgm(potential_aligned_pairs, sim_mat, mwgm_igraph)
check_alignment(selected_pairs, total_n, context="selected_pairs")
del potential_aligned_pairs
print("mwgm costs time: {:.3f} s".format(time.time() - t1))
print("selecting potential alignment costs time: {:.3f} s".format(time.time() - t))
return selected_pairs
def generate_alignment(sim_mat, sim_th, k, all_n):
potential_aligned_pairs = filter_mat(sim_mat, sim_th)
if len(potential_aligned_pairs) == 0:
return None
check_alignment(potential_aligned_pairs, all_n, context="after sim filtered")
neighbors = search_nearest_k(sim_mat, k)
if neighbors is not None:
potential_aligned_pairs &= neighbors
if len(potential_aligned_pairs) == 0:
return None, None
check_alignment(potential_aligned_pairs, all_n, context="after sim and neighbours filtered")
del neighbors
return potential_aligned_pairs
def edit_alignment(alignment, prev_sim_mat, sim_mat, all_n):
t = time.time()
away_pairs = set()
for i, j in alignment:
if prev_sim_mat[i, j] > sim_mat[i, j]:
away_pairs.add((i, j))
check_alignment(away_pairs, all_n, "away pairs in selected pairs")
edited_pairs = alignment - away_pairs
check_alignment(edited_pairs, all_n, "after editing")
print("editing costs time: {:.3f} s".format(time.time() - t))
return alignment
def update_labeled_alignment(labeled_alignment, curr_labeled_alignment, sim_mat, all_n):
# all_alignment = labeled_alignment | curr_labeled_alignment
# check_alignment(labeled_alignment, all_n, context="before updating labeled alignment")
labeled_alignment_dict = dict(labeled_alignment)
n, n1 = 0, 0
for i, j in curr_labeled_alignment:
if labeled_alignment_dict.get(i, -1) == i and j != i:
n1 += 1
if i in labeled_alignment_dict.keys():
jj = labeled_alignment_dict.get(i)
old_sim = sim_mat[i, jj]
new_sim = sim_mat[i, j]
if new_sim >= old_sim:
if jj == i and j != i:
n += 1
labeled_alignment_dict[i] = j
else:
labeled_alignment_dict[i] = j
print("update wrongly: ", n, "greedy update wrongly: ", n1)
labeled_alignment = set(zip(labeled_alignment_dict.keys(), labeled_alignment_dict.values()))
check_alignment(labeled_alignment, all_n, context="after editing labeled alignment (<-)")
# selected_pairs = mwgm(all_alignment, sim_mat, mwgm_igraph)
# check_alignment(selected_pairs, context="after updating labeled alignment with mwgm")
return labeled_alignment
def update_labeled_alignment_label(labeled_alignment, sim_mat, all_n):
# check_alignment(labeled_alignment, all_n, context="before updating labeled alignment label")
labeled_alignment_dict = dict()
updated_alignment = set()
for i, j in labeled_alignment:
ents_j = labeled_alignment_dict.get(j, set())
ents_j.add(i)
labeled_alignment_dict[j] = ents_j
for j, ents_j in labeled_alignment_dict.items():
if len(ents_j) == 1:
for i in ents_j:
updated_alignment.add((i, j))
else:
max_i = -1
max_sim = -10
for i in ents_j:
if sim_mat[i, j] > max_sim:
max_sim = sim_mat[i, j]
max_i = i
updated_alignment.add((max_i, j))
check_alignment(updated_alignment, all_n, context="after editing labeled alignment (->)")
return updated_alignment