-
Notifications
You must be signed in to change notification settings - Fork 1
/
lexsub_data_loader.py
377 lines (321 loc) · 15.5 KB
/
lexsub_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import logging
from pathlib import Path
from typing import List, Union, Optional
import torch
import torch.utils.data as data
from torch.nn.utils.rnn import pad_sequence
import random
from utils import split_line, strip_accents
logger = logging.getLogger(Path(__file__).name)
logger.setLevel(logging.INFO)
# Links to basic supported lexical substitution data sets.
LEXSUB_DATASET_DRIVE_URLS = {
"coinco": "https://docs.google.com/uc?export=download&id=1Sb7I_0NpBJNq4AvMyAc9HJZidamJm-Rx",
"semeval_all": "https://docs.google.com/uc?export=download&id=1TG-B09n2K5oRd_tJzMlBNhe0Jr_89s5c",
"semeval_test": "https://docs.google.com/uc?export=download&id=1StQwn2d1eYy3phHfWqAyRYE7CTLsO2pg",
"semeval_trial": "https://docs.google.com/uc?export=download&id=1SiPovrnD_EMrdhkyII3Vkw-jinUZZBqn",
"twsi2": "https://docs.google.com/uc?export=download&id=1SYljWOOlkIPfcc8GWlm_ioVW9n__dZ83",
}
# List of supported data sets.
LEXSUB_DATASETS = ("semeval_all", "semeval_trial", "semeval_test", "coinco", "twsi2")
class My_data_set(data.Dataset):
DATA_COLUMNS = [
"context",
"candidates",
"target_position",
"target_lemma",
"pos_tag",
"gold_subst",
# "gold_subst_weights",
]
def __init__(
self,
dataset_name: str,
data_root_path: Union[str, Path],
tokenizer,
url: Optional[str] = None,
with_pos_tag: bool = True,
sent_max_length: int = 80,
candidate_max_length: int = 10,
):
"""
Reader for Lexical Substitution datasets.
Args:
dataset_name: Alias for dataset naming.
data_root_path: Path for all available datasets. Datasets will be downloaded to this directory.
url: Link for downloading dataset.
with_pos_tag: Bool flag. If True, then the reader expects the presence of POS-tags in the dataset.
tokenizer: RobertaTokenizerFast from huggingface transformers
"""
# if url is None and dataset_name in LEXSUB_DATASETS:
# url = LEXSUB_DATASET_DRIVE_URLS[dataset_name]
self.dataset_path = Path(data_root_path) / dataset_name
self.tokenizer = tokenizer
# self.url = url
# if not self.dataset_path.exists():
# download_dataset(self.url, self.dataset_path)
self.with_pos_tag = with_pos_tag
self.sent_max_length = sent_max_length
self.candidate_max_length = candidate_max_length
self.dataset = self.read_dataset()
def read_file(
self, file_path: Union[str, Path], accents: bool = False, lower: bool = False
) -> List[str]:
file_path = Path(file_path)
if not file_path.exists():
if self.url is None:
raise FileNotFoundError(f"File {file_path} doesn't exist!")
download_dataset(self.url, self.dataset_path)
logger.info(msg=f"Reading data from {file_path} file...")
with file_path.open("r") as f:
data = f.readlines()
while "\n" in data:
data.remove("\n")
if accents:
data = [strip_accents(line) for line in data]
if lower:
data = [line.lower() for line in data]
logger.info(msg=f"Done. File contains {len(data)} lines")
return data
def read_dataset(self):
"""
Lexical Substitution dataset consists of 3 different files:
1. sentences - file with contexts, target word positions and POS-tags.
2. golds - file with gold substitutes and annotators info.
3. candidates - file with candidates for Candidate Ranking task.
"""
golds_data = self._preprocess_gold_part(
self.read_file(self.dataset_path / "gold")
)
sentences_data = self._preprocess_sentence_part(
self.read_file(self.dataset_path / "sentences")
)
candidates_data = self._preprocess_candidate_part(
self.read_file(self.dataset_path / "candidates")
)
# Reading mapping from target to candidates
lemma_to_candidates = {}
for lemma, *candidates in candidates_data:
lemma_to_candidates[lemma] = list(sorted(set(candidates)))
# Reading golds
golds_map = {}
for datum in golds_data:
gold_id = datum[1]
assert gold_id not in golds_map, "Duplicated gold id occurred!"
# some substitutes are multi-word expressions
# each substitute needs to be an array, most of them are single-value
substitutes = [pair[0].split() for pair in datum[2:] if pair]
# gold_weights = [float(pair[1]) for pair in datum[2:] if pair]
golds_map[gold_id] = {
"gold_subst": substitutes,
# "gold_subst_weights": gold_weights,
}
# Reading context and creating dataset
dataset = {column: [] for column in self.DATA_COLUMNS}
candidates = []
context = []
gold_subst = []
target_pos = []
for datum in sentences_data:
context_id = datum[1]
if context_id not in golds_map:
logger.warning(f"Missing golds for context with id {context_id}")
continue
target, pos_tag = datum[0].split(".", maxsplit=1)
cands = lemma_to_candidates[target + "." + pos_tag.split(".")[0]]
# Similar to gold_subst, candidates should be an array of array
temp_candidates = [cand.split(" ") for cand in cands]
if len(temp_candidates) <= 1:
continue
else:
candidates.append(temp_candidates)
# else:
# target = datum[0]
# dataset["target_lemma"].append(target)
# dataset["pos_tag"].append(None)
# dataset["candidates"].append(lemma_to_candidates[target])
dataset["target_lemma"].append(target)
dataset["pos_tag"].append(pos_tag)
dataset["target_position"].append(int(datum[2]))
# dataset["context"].append(datum[3].split())
context.append(datum[3].split())
gold_data = golds_map[context_id]
# dataset["gold_subst"].append(gold_data["gold_subst"])
gold_subst.append(gold_data["gold_subst"])
# dataset["gold_subst_weights"].append(gold_data["gold_subst_weights"])
# for instance in context+candidates:
# for word in instance:
# self.vocabulary.add_word(word)
tokenizer_vocab = list(set(self.tokenizer.vocab.keys()))
for idx in range(len(context)):
dataset["context"].append(self.tokenizer.convert_tokens_to_ids(context[idx]))
if gold_subst[idx][0] not in candidates[idx]:
candidates[idx].insert(0, gold_subst[idx][0])
dataset["candidates"].append([self.tokenizer.convert_tokens_to_ids(c) for c in candidates[idx]])
# tokenized_candidates = []
# for candidate in candidates[idx][:self.candidate_max_length]:
# temp_token = self.tokenizer.convert_tokens_to_ids(candidate)
# if temp_token[0] == self.tokenizer.unk_token_id:
# self.tokenizer.add_tokens(candidate)
# tokenized_candidates.append(self.tokenizer.convert_tokens_to_ids(candidate))
# dataset["candidates"].append(tokenized_candidates)
dataset["gold_subst"].append(self.tokenizer.convert_tokens_to_ids(gold_subst[idx][0]))
assert dataset["target_position"][-1] <= len(dataset["context"][-1]), \
f"Wrong target position ({dataset['target_position']} in context with id {context_id})"
return dataset
@staticmethod
def _preprocess_sentence_part(sentences: List[str]):
"""
Method for processing raw lines from file with sentences.
Args:
sentences: List of raw lines.
Returns:
sentences: List of processed sentences.
"""
for idx in range(len(sentences)):
sentence_info = split_line(sentences[idx], sep="\t")
sentences[idx] = sentence_info
return sentences
@staticmethod
def _preprocess_candidate_part(candidates):
"""
Method for processing raw lines from file with candidates.
Args:
candidates: List of raw lines.
Returns:
candidates: List of processed candidates.
"""
for idx in range(len(candidates)):
candidates_info = split_line(candidates[idx], sep="::")
candidates[idx] = [candidates_info[0].strip()]
candidates[idx] += candidates_info[1].split(";")
for jdx in range(1, len(candidates[idx])):
candidates[idx][jdx] = candidates[idx][jdx].strip()
return candidates
@staticmethod
def _preprocess_gold_part(golds):
"""
Method for processing raw lines from file with golds.
Args:
golds: List of raw lines.
Returns:
golds: List of processed golds.
"""
for idx in range(len(golds)):
gold_info = split_line(golds[idx], sep="::")
golds[idx] = gold_info[0].rsplit(maxsplit=1)
golds[idx].extend([
tuple(subst.strip().rsplit(maxsplit=1))
for subst in gold_info[1].split(";")
if subst
])
return golds
def __getitem__(self, index):
# data_item = eval(self.raw_data[index])
init_sent = self.dataset['context'][index][:self.sent_max_length]
init_sent = [self.tokenizer.bos_token_id] + init_sent + [self.tokenizer.eos_token_id]
subst_label = [0]*(self.candidate_max_length)
# Take the substitute with highest weight as golden one
gold_sub = self.dataset['gold_subst'][index]
# randomly select candidate_max_length substs
cand_len = len(self.dataset['candidates'][index])
if cand_len < self.candidate_max_length:
subst = random.sample(self.dataset['candidates'][index] + [gold_sub]*(self.candidate_max_length-cand_len) , self.candidate_max_length)
else:
subst = random.sample(self.dataset['candidates'][index], self.candidate_max_length)
if gold_sub not in subst:
subst[random.randint(0,len(subst)-1)] = gold_sub
subst_label[subst.index(gold_sub)] = 1
# Have multiple right word with different weight
# set the prompt_label as weights instead of True/False
# for sub in self.dataset['gold_subst'][index]:
# if sub in subst:
# right_subst_index.append(subst.index(sub))
# subst_weights = [0]*(self.candidate_max_length)
# for gold_idx, right_idx in right_subst_index:
# subst_weights[right_idx] = self.dataset['gold_subst_weights'][index][gold_idx]
# subst_word_index = [len(init_sent) + i for i in range(len(subst))]
prompt = []
subst_word_index = []
for s in subst:
tmp = range(len(init_sent)+len(prompt), len(init_sent)+len(prompt)+len(s))
subst_word_index.append(list(tmp))
prompt.extend(s)
prompt.append(self.tokenizer.eos_token_id)
final_sent = init_sent + prompt
while len(final_sent) < (self.sent_max_length+self.candidate_max_length):
final_sent.append(self.tokenizer.pad_token_id)
new_data_item = {}
new_data_item['sent'] = torch.LongTensor(final_sent)
new_data_item['candidates'] = subst #self.dataset['candidates'][index][:self.candidate_max_length]
new_data_item['target_position'] = self.dataset['target_position'][index]
new_data_item['pos_tag'] = self.dataset['pos_tag'][index]
# should lemma be a seperate dictionary?
new_data_item['subst_S_index'] = len(init_sent)
new_data_item['subst_label'] = subst_label
new_data_item['subst_word_index'] = subst_word_index
return new_data_item
def __len__(self):
return len(self.dataset['context'])
# class Vocabulary(object):
# def __init__(self):
# self.word2idx = {}
# self.idx2word = []
# def add_word(self, word):
# if word not in self.word2idx:
# self.idx2word.append(word)
# self.word2idx[word] = len(self.idx2word) - 1
# return self.word2idx[word]
# def __len__(self):
# return len(self.idx2word)
def batch_convert_ids_to_tensors(batch_token_ids, ignore_index):
bz = len(batch_token_ids)
batch_tensors = [batch_token_ids[i].squeeze(0) for i in range(bz)]
batch_tensors = pad_sequence(batch_tensors, True, padding_value=ignore_index).long()
return batch_tensors
def collate_fn(data):
batch_data = {'sent': [], 'candidates':[], 'target_position':[], "pos_tag":[], 'subst_S_index': [], 'subst_label':[], 'subst_word_index':[] }
for data_item in data:
for k, v in batch_data.items():
batch_data[k].append(data_item[k])
batch_data['sent'] = batch_convert_ids_to_tensors(batch_data['sent'], ignore_index=1) # cotext + candidates
#batch_data['metaphor_label'] = batch_convert_ids_to_tensors(batch_data['metaphor_label'], ignore_index=2) # 0=no, 1=yes, 2=pad
batch_data['candidates'] = batch_data['candidates']
batch_data['target_position'] = batch_data['target_position']
batch_data['pos_tag'] = batch_data['pos_tag']
batch_data['subst_S_index'] = torch.LongTensor(batch_data['subst_S_index']) # start index of candidates
batch_data['subst_label'] = torch.FloatTensor(batch_data['subst_label'])
batch_data['subst_word_index'] = batch_data['subst_word_index'] # index of each candidates in final_sent
return batch_data
def get_lexsub_loader(dataset_names, data_root_path, batch_size, tokenizer, candidate_max_length=50, num_workers=0):
if len(dataset_names) == 1:
dataset = My_data_set(dataset_names[0], data_root_path, tokenizer=tokenizer, candidate_max_length=candidate_max_length)
generator = torch.Generator().manual_seed(42)
train, test = data.random_split(dataset, [0.7, 0.3], generator=generator)
else:
# datasets = [My_data_set(name, data_root_path, tokenizer=tokenizer, candidate_max_length=candidate_max_length) for name in dataset_names]
train = []
test = []
for name in dataset_names:
dataset = My_data_set(name, data_root_path, tokenizer=tokenizer, candidate_max_length=candidate_max_length)
generator = torch.Generator().manual_seed(42)
tmp_train, tmp_test = data.random_split(dataset, [0.7, 0.3], generator=generator)
train.append(tmp_train)
test.append(tmp_train)
train = data.ConcatDataset(train)
test = data.ConcatDataset(test)
train_loader = data.DataLoader(dataset=train,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=num_workers,
collate_fn=collate_fn,
)
test_loader = data.DataLoader(dataset=test,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=num_workers,
collate_fn=collate_fn,
)
return train_loader, test_loader