forked from Franck-Dernoncourt/NeuroNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
108 lines (88 loc) · 3.52 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Always prefer setuptools over distutils
from setuptools import setup, find_packages
# To use a consistent encoding
from codecs import open
from os import path
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
# import glob
# for directory in glob.glob('./**/', recursive=True):
# print(directory)
setup(
name='pyneuroner',
# Versions should comply with PEP440. For a discussion on single-sourcing
# the version across setup.py and the project code, see
# https://packaging.python.org/en/latest/single_source_version.html
version='1.0.8',
description='NeuroNER',
long_description=long_description,
long_description_content_type='text/markdown',
# The project's main homepage.
url='https://github.com/Franck-Dernoncourt/NeuroNER',
# Author details
# author='',
# author_email='',
# Choose your license
# license='MIT',
# What does your project relate to?
keywords='Named-entity recognition using neural networks',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages().
# packages=find_packages(exclude=['contrib', 'docs', 'tests','env',
# 'output']),
packages=['neuroner'],
# Alternatively, if you want to distribute just a my_module.py, uncomment
# this:
# py_modules=[''],
# List run-time dependencies here. These will be installed by pip when
# your project is installed. For an analysis of "install_requires" vs pip's
# requirements files see:
# https://packaging.python.org/en/latest/requirements.html
install_requires=[
'matplotlib>=3.0.2',
'networkx>=2.2',
'pycorenlp>=0.3.0',
'scikit-learn>=0.20.2',
'scipy>=1.2.0',
'spacy>=2.0.18',
],
# allow user to select flavour of TensorFlow
# https://github.com/tensorflow/tensorflow/issues/7166
extras_require={
"cpu": ["tensorflow>=1.12.0"],
"gpu": ["tensorflow-gpu>=1.0.0"],
},
# List additional groups of dependencies here (e.g. development
# dependencies). You can install these using the following syntax,
# for example:
# $ pip install -e .[dev,test]
# extras_require={
# 'dev': ['check-manifest'],
# 'test': ['coverage'],
# },
# If there are data files included in your packages that need to be
# installed, specify them here. If using Python 2.6 or less, then these
# have to be included in MANIFEST.in as well.
zip_safe=False,
# package_dir={'neuroner': 'neuroner'},
include_package_data = True,
package_data={'data': ['data/**'],
'trained_models': ['trained_models/**']
},
# Although 'package_data' is the preferred approach, in some case you may
# need to place data files outside of your packages. See:
# http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa
# In this case, 'data_file' will be installed into '<sys.prefix>/my_data'
# data_files=[('my_data', ['data/data_file'])],
# data_files=[('neuroner', ['conlleval'])],
# To provide executable scripts, use entry points in preference to the
# "scripts" keyword. Entry points provide cross-platform support and allow
# pip to create the appropriate form of executable for the target platform.
entry_points={
'console_scripts': [
'neuroner = neuroner.__main__:main',
],
},
)