(note: current doc is based on arctic-1.68.0)
VersionStore serializes and stores Pandas objects, numpy arrays as well as other python types in MongoDB. Objects are versioned
and new versions are created when a symbol
is modified.
from arctic import Arctic
a = Arctic(‘localhost’)
a.initialize_library('vstore')
lib = a[‘vstore’]
At this point you have an empty VersionStore library. You do not need to specify the storage type because VersionStore is the default library type in Arctic. You can write data to it several ways. The most basic is to use the write
method. Write takes the following arguments:
symbol, data, metadata=None, prune_previous_version=True, **kwargs
symbol
is the name that is used to store/retrieve the data in Arctic. data
is the data to be stored in MongoDB. metadata
is optional user defined metadata. It must be a dict
. prune_previous_versions
will prune/remove previous versions of the data (provided they have not been included in a snapshot). kwargs
are passed on to the individual write handler. There are write handlers for different data types.
write
is designed to write and replace data. If you write symbol test
with one dataset and write it again with another, the original data will be replace with a new version of the data.
>>> from pandas import DataFrame, MultiIndex
>>> from datetime import datetime as dt
>>> df = DataFrame(data={'data': [1, 2, 3]},
index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1),
(dt(2016, 1, 2), 1),
(dt(2016, 1, 3), 1)],
names=['date', 'id']))
>>> lib.write('test', df)
VersionedItem(symbol=test,library=arctic.vstore,data=<class 'NoneType'>,version=1,metadata=None,host=127.0.0.1)
>>> lib.read('test').data
data
date id
2016-01-01 1 1
2016-01-02 1 2
2016-01-03 1 3
>>> df = DataFrame(data={'data': [100, 200, 300]},
index=MultiIndex.from_tuples([(dt(2016, 1, 1), 1),
(dt(2016, 1, 2), 1),
(dt(2016, 1, 3), 1)],
names=['date', 'id']))
>>> lib.write('test', df)
VersionedItem(symbol=test,library=arctic.vstore,data=<class 'NoneType'>,version=2,metadata=None,host=127.0.0.1)
>>> lib.read('test').data
data
date id
2016-01-01 1 100
2016-01-02 1 200
2016-01-03 1 300
write
returns a VersionedItem
object. VersionedItem
contains the following members:
- symbol
- library
- version - version number of the data written
- metadata - metadata if exists, or None
- data (for writes this is None, for reads it contains the data read from the database).
- host
You should also note that VersionStore's write
effectively overwrites already written data. In the above example, the second write
replaced the data in symbol test
with the new dataframe. The original data (version 1) is still available, but must be referenced by its version number in order to retrieve it. The read
method takes the following arguments:
symbol, as_of=None, date_range=None, from_version=None, allow_secondary=None, **kwargs
as_of
allows you to retrieve the data as it was at a specific point in time. You can define that point in time in a number of ways.
- the name of a snapshot (string)
- a version number (int)
- a datetime (
datetime.datetime
)
date_range
lets you subset the data via an Arctic DateRange object. DateRange
s allows you to specify a date range ('2016-01-01', '2016-09-30') with start and end dates, as well as open ended ranges (None, '2016-09-30'). Ranges can be open at either end. allow_secondary
lets you override the default behavior to allow or disallow reading from secondary members of the mongo cluster.
>>> lib.read('test').data
data
date id
2016-01-01 1 100
2016-01-02 1 200
2016-01-03 1 300
>>> lib.read('test', as_of=1).data
date id data
2016-01-01 1 1
2016-01-02 1 2
2016-01-03 1 3
>>> from arctic.date import DateRange
>>> lib.read('test', date_range=DateRange('2016-01-01', '2016-01-01')).data
date id data
2016-01-01 1 100
DateRange's only apply to pandas DataFrames, and the dataframe must have a datetime index present.
Another way to write data is with the append
method. append
takes the following arguments:
symbol, data, metadata=None, prune_previous_version=True, upsert=True, **kwargs
upsert
is the only new argument. upsert
means that if the symbol does not exist, it will create it. If upsert
were False
an error would be raised as there would be no existing data to append to.
>>> lib.append('new', df, upsert=False)
~/arctic/arctic/store/version_store.py in append(self, symbol, data, metadata, prune_previous_version, upsert, **kwargs)
505 return self.write(symbol=symbol, data=data, prune_previous_version=prune_previous_version, metadata=metadata)
506
--> 507 assert previous_version is not None
508 dirty_append = False
509
AssertionError:
>>> lib.append('new', df, upsert=True)
VersionedItem(symbol=new,library=arctic.vstore,data=<class 'NoneType'>,version=1,metadata=None,host=127.0.0.1)
A number of other utility methods are available:
- delete
- has_symbol
- list_versions
- read_metadata
- write_metadata
- restore_version
delete
does what you might expect - it deletes a symbol from the library. It takes a single argument, symbol
. has_symbol
and list_symbols
will return information about the current state of symbols in the library. Their signatures are:
list_symbols(self, all_symbols=False, snapshot=None, regex=None, **kwargs)
def has_symbol(self, symbol, as_of=None)
for list_symbols
, all_symbols
if set to true
will return all symbols, from all snapshots, even if the symbol has been deleted in the current version (but is saved in a snapshot). snapshot
allows you to list symbols under a specified snapshot
. regex
allows you to supply a regular expression to further restrict the list of symbols returned from the query. Arctic uses MongoDB's $regex
functionality. Mongo supports PERL syntax regex; more information is available here
has_symbol
returns True
or False
based on wheter the symbol exists or not. You can restrict this check to a specific version
via as_of
.
>>> lib.delete('new')
>>> lib.list_symbols()
['test']
>>> lib.has_symbol('new')
False
>>> lib.write('test2', df)
>>> lib.list_symbols(regex=".*2")
['test2']
read_metadata
and write_metadata
allow you to read/set the user defined metadata directly for a given symbol.
>>> lib.read_metadata('test2')
VersionedItem(symbol=test2,library=arctic.vstore,data=<class 'NoneType'>,version=1,metadata=None,host=127.0.0.1)
>>> lib.read_metadata('test2').metadata
>>> lib.write_metadata('test2', {'meta': 'data'})
VersionedItem(symbol=test2,library=arctic.vstore,data=<class 'NoneType'>,version=2,metadata={'meta': 'data'},host=127.0.0.1)
>>> lib.read_metadata('test2').metadata
{'meta': 'data'}
restore_version
lets you set the latest version to an older version. You can use list_versions
to see information about the current state of the versions.
>>> lib.list_versions('test')
[{'symbol': 'test',
'version': 3,
'deleted': False,
'date': datetime.datetime(2018, 8, 16, 17, 59, 47, tzinfo=tzfile('/usr/share/zoneinfo/America/New_York')),
'snapshots': []},
{'symbol': 'test',
'version': 2,
'deleted': False,
'date': datetime.datetime(2018, 8, 15, 18, 0, 33, tzinfo=tzfile('/usr/share/zoneinfo/America/New_York')),
'snapshots': []}]
>>> lib.restore_version('test', 2)
VersionedItem(symbol=test,library=arctic.vstore,data=<class 'NoneType'>,version=4,metadata=None,host=127.0.0.1)
>>> lib.read('test').data
data
date id
2016-01-01 1 100
2016-01-02 1 200
2016-01-03 1 300
>>> lib.list_versions('test')
[{'symbol': 'test',
'version': 4,
'deleted': False,
'date': datetime.datetime(2018, 8, 16, 18, 54, 10, tzinfo=tzfile('/usr/share/zoneinfo/America/New_York')),
'snapshots': []},
{'symbol': 'test',
'version': 3,
'deleted': False,
'date': datetime.datetime(2018, 8, 16, 17, 59, 47, tzinfo=tzfile('/usr/share/zoneinfo/America/New_York')),
'snapshots': []},
{'symbol': 'test',
'version': 2,
'deleted': False,
'date': datetime.datetime(2018, 8, 15, 18, 0, 33, tzinfo=tzfile('/usr/share/zoneinfo/America/New_York')),
'snapshots': []}]
Using restore_version
did not delete the latest version, it simply created a new version with the data referenced by the user supplied version.
VersionStore allows you to create a snapshot of data and assign it a name. Data that is part of a snapshot that is deleted is still contained in a snapshot. The snapshot methods are:
- snapshot
- delete_snapshot
- list_snapshots
snapshot
allows you to create a snapshot. Its signature is very simple
snap_name, metadata=None, skip_symbols=None, versions=None
snap_name
is the name of the snap shot being created. metadata
allows you to supply user defined metadata to the snapshot. skip_symbols
allows you to exclude symbols from the snapshot. versions
allows you to specify specific versions to incliude in the snapshot.
delete_snapshot
and list_snapshot
function similarly to delete
and list_versions
respectively. list_snapshots
returns a dictionary of snapshot
names that map to the metadata
for the snapshot.
>>> lib.list_symbols()
['test', 'test2']
>>> lib.snapshot('backup')
>>> lib.list_snapshots()
{'backup': None}
>>> lib.list_symbols(snapshot='backup')
['test', 'test2']
>>> lib.delete('test')
>>> lib.delete('test2')
>>> lib.list_symbols()
[]
>>> lib.list_symbols(snapshot='backup')
['test', 'test2']
>>> lib.read('test')
~/arctic/arctic/store/version_store.py in _read_metadata(self, symbol, as_of, read_preference)
455 metadata = _version.get('metadata', None)
456 if metadata is not None and metadata.get('deleted', False) is True:
--> 457 raise NoDataFoundException("No data found for %s in library %s" % (symbol, self._arctic_lib.get_name()))
458
459 return _version
NoDataFoundException: No data found for test in library arctic.vstore
>>> lib.read('test', as_of='backup')
VersionedItem(symbol=test,library=arctic.vstore,data=<class 'pandas.core.frame.DataFrame'>,version=4,metadata=None,host=127.0.0.1)
>>> lib.read('test', as_of='backup').data
data
date id
2016-01-01 1 100
2016-01-02 1 200
2016-01-03 1 300