Skip to content

Latest commit

 

History

History
77 lines (58 loc) · 3.05 KB

NORMAL_README.md

File metadata and controls

77 lines (58 loc) · 3.05 KB

Finetuning Sapiens: Surface Normal Estimation

This guide outlines the process to finetune the pretrained Sapiens model for surface normal estimation on custom data.

📂 1. Data Preparation

Set $DATA_ROOT as your training data root directory.
We provide a toy dataset for easy start at $DATA_ROOT=/uca_transient_a/open_source_from_manifold/rawalk/sapiens_finetune/task_normal

The train data directory structure is as follows:

  $DATA_ROOT/
  ├── images/
  │   └── 00000000.png
  │   └── 00000001.png
  │   └── 00000002.png
  ├── masks/
  │   └── 00000000.png
  │   └── 00000001.png
  │   └── 00000002.png
  ├── normals/
  │   └── 00000000.npy
  │   └── 00000001.npy
  │   └── 00000002.npy

The folders as follows:
-$DATA_ROOT/images: RGB images (.png or .jpg or .jpeg).
-$DATA_ROOT/mask: Boolean masks for human pixels (.png, .jpg, or .jpeg).
-$DATA_ROOT/normals: Ground truth surface normals (axis order: (X, Y, Z) or (Z, Y, X)).

⚙️ 2. Configuration Update

Edit $SAPIENS_ROOT/seg/configs/sapiens_normal/normal_general/sapiens_1b_normal_general-1024x768.py:

  1. Set pretrained_checkpoint to your checkpoint path.
  2. Update dataset_train.data_root to your $DATA_ROOT.
  3. Modify train_pipeline.RandomBackground.background_images_root to a directory with non-human images for background augmentation. Optionally, you can remove this augmentation.
  4. (Optional) Adjust hyperparameters like num_epochs and optim_wrapper.optimizer.lr.

🏋️ 3. Finetuning

The training scripts for Sapiens-1B are under: $SAPIENS_ROOT/seg/scripts/finetune/normal_general/sapiens_1b/ Make sure you have activated the sapiens python conda environment.

A. 🚀 Single-node Training

For datasets < 100k samples, use $SAPIENS_ROOT/seg/scripts/finetune/normal_general/sapiens_1b/node.sh.

Key variables:

  • DEVICES: GPU IDs (e.g., "0,1,2,3,4,5,6,7")
  • TRAIN_BATCH_SIZE_PER_GPU: Default 2 for A100 GPU
  • OUTPUT_DIR: Checkpoint and log directory
  • RESUME_FROM: Checkpoint to resume training from. Starts training from previous epoch. Defaults to empty string.
  • LOAD_FROM: Checkpoint to load weight from. Starts training from epoch 0. Defaults to empty string.
  • mode=multi-gpu: Launch multi-gpu training with multiple workers for dataloading.
  • mode=debug: (Optional) To debug. Launched single gpu dry run, with single worker for dataloading. Supports interactive debugging with pdb/ipdb.

Note, if you wish to finetune from an existing normal estimation checkpoint, set the LOAD_FROM variable.

Launch:

cd $SAPIENS_ROOT/seg/scripts/finetune/normal_general/sapiens_1b
./node.sh

B. 🌐 Multi-node Training (Slurm)

Use $SAPIENS_ROOT/seg/scripts/finetune/normal_general/sapiens_1b/slurm.sh

Additional variables:

  • CONDA_ENV: Path to conda environment
  • NUM_NODES: Number of nodes (default 4, 8 GPUs per node)

Launch:

cd $SAPIENS_ROOT/seg/scripts/finetune/normal_general/sapiens_1b
./slurm.sh