forked from naver/multi-hmr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
511 lines (421 loc) · 20.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
from torch import nn
import torch
import numpy as np
import roma
import copy
from utils import unpatch, inverse_perspective_projection, undo_focal_length_normalization, undo_log_depth
from blocks import Dinov2Backbone, FourierPositionEncoding, TransformerDecoder, SMPL_Layer
from utils import rot6d_to_rotmat, rebatch, pad_to_max
import torch.nn as nn
import numpy as np
import einops
from utils.constants import MEAN_PARAMS
class Model(nn.Module):
""" A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.) """
def __init__(self,
backbone='dinov2_vitb14',
pretrained_backbone=False,
img_size=896,
camera_embedding='geometric', # geometric encodes viewing directions with fourrier encoding
camera_embedding_num_bands=16, # increase the size of the camera embedding
camera_embedding_max_resolution=64, # does not increase the size of the camera embedding
nearness=True, # regress log(1/z)
xat_depth=2, # number of cross attention block (SA, CA, MLP) in the HPH head.
xat_num_heads=8, # Number of attention heads
dict_smpl_layer=None,
person_center='head',
clip_dist=True,
num_betas=10,
*args, **kwargs):
super().__init__()
# Save options
self.img_size = img_size
self.nearness = nearness
self.clip_dist = clip_dist,
self.xat_depth = xat_depth
self.xat_num_heads = xat_num_heads
self.num_betas = num_betas
# Setup backbone
self.backbone = Dinov2Backbone(backbone, pretrained=pretrained_backbone)
self.embed_dim = self.backbone.embed_dim
self.patch_size = self.backbone.patch_size
assert self.img_size % self.patch_size == 0, "Invalid img size"
# Camera instrinsics
self.fovn = 60
self.camera_embedding = camera_embedding
self.camera_embed_dim = 0
if self.camera_embedding is not None:
if not self.camera_embedding == 'geometric':
raise NotImplementedError("Only geometric camera embedding is implemented")
self.camera = FourierPositionEncoding(n=3, num_bands=camera_embedding_num_bands,max_resolution=camera_embedding_max_resolution)
# import pdb
# pdb.set_trace()
self.camera_embed_dim = self.camera.channels
# Heads - Detection
self.mlp_classif = regression_mlp([self.embed_dim, self.embed_dim, 1]) # bg or human
# Heads - Human properties
self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2]) # offset
# SMPL Layers
self.nrot = 53
dict_smpl_layer = {
'neutral': {
10: SMPL_Layer(type='smplx', gender='neutral', num_betas=10, kid=False, person_center=person_center),
11: SMPL_Layer(type='smplx', gender='neutral', num_betas=11, kid=False, person_center=person_center),
}
}
_moduleDict = []
for k, _smpl_layer in dict_smpl_layer.items():
for x, y in _smpl_layer.items():
_moduleDict.append([f"{k}_{x}", copy.deepcopy(y)])
self.smpl_layer = nn.ModuleDict(_moduleDict)
self.x_attention_head = HPH(
num_body_joints=self.nrot-1, #23,
context_dim=self.embed_dim + self.camera_embed_dim,
dim=1024,
depth=self.xat_depth,
heads=self.xat_num_heads,
mlp_dim=1024,
dim_head=32,
dropout=0.0,
emb_dropout=0.0,
at_token_res=self.img_size // self.patch_size,
num_betas=self.num_betas,
)
def detection(self, z, nms_kernel_size, det_thresh, N, idx=None, is_training=False):
""" Detection score on the entire low res image """
scores = _sigmoid(self.mlp_classif(z)) # per token detection score.
# Restore Height and Width dimensions.
scores = unpatch(scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N)))
if not is_training:
if nms_kernel_size > 1: # Easy nms: supress adjacent high scores with max pooling.
scores = _nms(scores, kernel=nms_kernel_size)
_scores = torch.permute(scores, (0, 2, 3, 1))
# Binary decision (keep confident detections)
idx = apply_threshold(det_thresh, _scores)
else:
assert idx is not None # training time
# Scores
scores_detected = scores[idx[0], idx[3], idx[1],idx[2]] # scores of the detected humans only
scores = torch.permute(scores, (0, 2, 3, 1))
return scores, scores_detected, idx
def embedd_camera(self, K, z):
""" Embed viewing directions using fourrier encoding."""
bs = z.shape[0]
_h, _w = list(z.shape[-2:])
points = torch.stack([torch.arange(0,_h,1).reshape(-1,1).repeat(1,_w), torch.arange(0,_w,1).reshape(1,-1).repeat(_h,1)],-1).to(z.device).float() # [h,w,2]
points = points * self.patch_size + self.patch_size // 2 # move to pixel space - we give the pixel center of each token
points = points.reshape(1,-1,2).repeat(bs,1,1) # (bs, N, 2): 2D points
distance = torch.ones(bs,points.shape[1],1).to(K.device) # (bs, N, 1): distance in the 3D world
rays = inverse_perspective_projection(points, K, distance) # (bs, N, 3)
rays_embeddings = self.camera(pos=rays)
# Repeat for each element of the batch
z_K = rays_embeddings.reshape(bs,_h,_w,self.camera_embed_dim) # [bs,h,w,D]
return z_K
def to_euclidean_dist(self, x, dist, _K):
# Focal length normalization
focal = _K[:,[0],[0]]
dist = undo_focal_length_normalization(dist, focal, fovn=self.fovn, img_size=x.shape[-1])
# log space
if self.nearness:
dist = undo_log_depth(dist)
# Clamping
if self.clip_dist:
dist = torch.clamp(dist, 0, 50)
return dist
def forward(self,
x,
idx=None,
det_thresh=0.3,
nms_kernel_size=3,
K=None,
is_training=False,
*args,
**kwargs):
"""
Forward pass of the model and compute the loss according to the groundtruth
Args:
- x: RGB image - [bs,3,224,224]
- idx: GT location of persons - tuple of 3 tensor of shape [p]
- idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space
Return:
- y: [bs,D,16,16]
"""
persons = []
out = {}
# Feature extraction
z = self.backbone(x)
B,N,C = z.size() # [bs,256,768]
# Detection
scores, scores_det, idx = self.detection(z, nms_kernel_size=nms_kernel_size, det_thresh=det_thresh, N=N,
idx=idx, is_training=is_training)
if len(idx[0]) == 0 and not is_training:
# no humans detected in the frame
return persons
# Map of Dense Feature
z = unpatch(z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N))) # [bs,D,16,16]
z_all = z
# Extract the 'central' features
z = torch.reshape(z, (z.shape[0], 1, z.shape[1]//1, z.shape[2], z.shape[3])) # [bs,stack_K,D,16,16]
z_central = z[idx[0],idx[3],:,idx[1],idx[2]] # dense vectors
# 2D offset regression
offset = self.mlp_offset(z_central)
# Camera instrincs
K_det = K[idx[0]] # cameras for detected person
z_K = self.embedd_camera(K, z) # Embed viewing directions.
z_central = torch.cat([z_central, z_K[idx[0],idx[1], idx[2]]], 1) # Add to query tokens.
z_all = torch.cat([z_all, z_K.permute(0,3,1,2)], 1) # for the cross-attention only
z = torch.cat([z, z_K.permute(0,3,1,2).unsqueeze(1)],2)
# Distance for estimating the 3D location in 3D space
loc = torch.stack([idx[2],idx[1]]).permute(1,0) # Moving from higher resolution the location of the pelvis
loc = (loc + 0.5 + offset ) * self.patch_size
# SMPL parameter regression
kv = z_all[idx[0]] # retrieving dense features associated to each central vector
pred_smpl_params, pred_cam = self.x_attention_head(z_central, kv, idx_0=idx[0], idx_det=idx)
# Get outputs from the SMPL layer.
shape = pred_smpl_params['betas']
rotmat = torch.cat([pred_smpl_params['global_orient'],pred_smpl_params['body_pose']], 1)
expression = pred_smpl_params['expression']
rotvec = roma.rotmat_to_rotvec(rotmat)
# Distance
dist = pred_cam[:, 0][:, None]
out['dist_postprocessed'] = dist # before applying any post-processing such as focal length normalization, inverse or log
dist = self.to_euclidean_dist(x, dist, K_det)
# Populate output dictionnary
out.update({'scores': scores,
'offset': offset,
'dist': dist,
'expression': expression,
'rotmat': rotmat,
'shape': shape,
'rotvec': rotvec,
'loc': loc})
assert rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0], "Incoherent shapes"
# Neutral
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](rotvec, shape, loc, dist, None, K=K_det, expression=expression)
out.update(smpl_out)
# Return
if is_training:
return out
else:
# Populate a dictionnary for each person
for i in range(idx[0].shape[0]):
person = {
# Detection
'scores': scores_det[i], # detection scores
'loc': out['loc'][i], # 2d pixel location of the primary keypoints
# SMPL-X params
'transl': out['transl'][i], # from the primary keypoint i.e. the head
'transl_pelvis': out['transl_pelvis'][i], # of the pelvis joint
'rotvec': out['rotvec'][i],
'expression': out['expression'][i],
'shape': out['shape'][i],
# SMPL-X meshs
'v3d': out['v3d'][i],
'j3d': out['j3d'][i],
'j2d': out['j2d'][i],
}
persons.append(person)
return persons
class HPH(nn.Module):
""" Cross-attention based SMPL Transformer decoder
Code modified from:
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301
"""
def __init__(self,
num_body_joints=52,
context_dim=1280,
dim=1024,
depth=2,
heads=8,
mlp_dim=1024,
dim_head=64,
dropout=0.0,
emb_dropout=0.0,
at_token_res=32,
num_betas=10,
):
super().__init__()
self.joint_rep_type, self.joint_rep_dim = '6d', 6
self.num_body_joints = num_body_joints
self.nrot = self.num_body_joints + 1
npose = self.joint_rep_dim * (self.num_body_joints + 1)
self.npose = npose
self.depth = depth,
self.heads = heads,
self.res = at_token_res
self.input_is_mean_shape = True
_context_dim = context_dim # for the central features
self.num_betas = num_betas
assert num_betas in [10, 11]
# Transformer Decoder setup.
# Based on https://github.com/shubham-goel/4D-Humans/blob/8830bb330558eea2395b7f57088ef0aae7f8fa22/hmr2/configs_hydra/experiment/hmr_vit_transformer.yaml#L35
transformer_args = dict(
num_tokens=1,
token_dim=(npose + self.num_betas + 3 + _context_dim) if self.input_is_mean_shape else 1,
dim=dim,
depth=depth,
heads=heads,
mlp_dim=mlp_dim,
dim_head=dim_head,
dropout=dropout,
emb_dropout=emb_dropout,
context_dim=context_dim,
)
self.transformer = TransformerDecoder(**transformer_args)
dim = transformer_args['dim']
# Final decoders to regress targets
self.decpose, self.decshape, self.deccam, self.decexpression = [nn.Linear(dim, od) for od in [npose, num_betas, 3, 10]]
# Register bufffers for the smpl layer.
self.set_smpl_init()
# Init learned embeddings for the cross attention queries
self.init_learned_queries(context_dim)
def init_learned_queries(self, context_dim, std=0.2):
""" Init learned embeddings for queries"""
self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_x, std=std)
self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_y, std=std)
self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_values_x, std=std)
self.cross_values_y = nn.Parameter(nn.Parameter(torch.zeros(self.res, context_dim)))
torch.nn.init.normal_(self.cross_values_y, std=std)
def set_smpl_init(self):
""" Fetch saved SMPL parameters and register buffers."""
mean_params = np.load(MEAN_PARAMS)
if self.nrot == 53:
init_body_pose = torch.eye(3).reshape(1,3,3).repeat(self.nrot,1,1)[:,:,:2].flatten(1).reshape(1, -1)
init_body_pose[:,:24*6] = torch.from_numpy(mean_params['pose'][:]).float() # global_orient+body_pose from SMPL
else:
init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0)
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0)
init_betas_kid = torch.cat([init_betas, torch.zeros_like(init_betas[:,[0]])],1)
init_expression = 0. * torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
if self.num_betas == 11:
init_betas = torch.cat([init_betas, torch.zeros_like(init_betas[:,:1])], 1)
self.register_buffer('init_body_pose', init_body_pose)
self.register_buffer('init_betas', init_betas)
self.register_buffer('init_betas_kid', init_betas_kid)
self.register_buffer('init_cam', init_cam)
self.register_buffer('init_expression', init_expression)
def cross_attn_inputs(self, x, x_central, idx_0, idx_det):
""" Reshape and pad x_central to have the right shape for Cross-attention processing.
Inject learned embeddings to query and key inputs at the location of detected people. """
h, w = x.shape[2], x.shape[3]
x = einops.rearrange(x, 'b c h w -> b (h w) c')
assert idx_0 is not None, "Learned cross queries only work with multicross"
if idx_0.shape[0] > 0:
# reconstruct the batch/nb_people dimensions: pad for images with fewer people than max.
counts, idx_det_0 = rebatch(idx_0, idx_det)
old_shape = x_central.shape
# Legacy check for old versions
assert idx_det is not None, 'idx_det needed for learned_attention'
# xx is the tensor with all features
xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
# Get learned embeddings for queries, at positions with detected people.
queries_xy = self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]]
# Add the embedding to the central features.
x_central = x_central + queries_xy
assert x_central.shape == old_shape, "Problem with shape"
# Make it a tensor of dim. [batch, max_ppl_along_batch, ...]
x_central, mask = pad_to_max(x_central, counts)
#xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
xx = xx[torch.cumsum(counts, dim=0)-1]
# Inject leared embeddings for key/values at detected locations.
values_xy = self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]]
xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy
x = einops.rearrange(xx, 'b c h w -> b (h w) c')
num_ppl = x_central.shape[1]
else:
mask = None
num_ppl = 1
counts = None
return x, x_central, mask, num_ppl, counts
def forward(self,
x_central,
x,
idx_0=None,
idx_det=None,
**kwargs):
""""
Forward the HPH module.
"""
batch_size = x.shape[0]
# Reshape inputs for cross attention and inject learned embeddings for queries and values.
x, x_central, mask, num_ppl, counts = self.cross_attn_inputs(x, x_central, idx_0, idx_det)
# Add init (mean smpl params) to the query for each quantity being regressed.
bs = x_central.shape[0] if idx_0.shape[0] else batch_size
expand = lambda x: x.expand(bs, num_ppl , -1)
pred_body_pose, pred_betas, pred_cam, pred_expression = [expand(x) for x in
[self.init_body_pose, self.init_betas, self.init_cam, self.init_expression]]
token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1)
if len(token.shape) == 2:
token = token[:,None,:]
# Process query and inputs with the cross-attention module.
token_out = self.transformer(token, context=x, mask=mask)
# Reshape outputs from [batch_size, nmax_ppl, ...] to [total_ppl, ...]
if mask is not None:
# Stack along batch axis.
token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)]
token_out = torch.concat(token_out_list, dim=0)
else:
token_out = token_out.squeeze(1) # (B, C)
# Decoded output token and add to init for each quantity to regress.
reshape = (lambda x: x) if idx_0.shape[0] == 0 else (lambda x: x[0, 0, ...][None, ...])
decoders = [self.decpose, self.decshape, self.deccam, self.decexpression]
inits = [pred_body_pose, pred_betas, pred_cam, pred_expression]
pred_body_pose, pred_betas, pred_cam, pred_expression = [d(token_out) + reshape(i) for d, i in zip(decoders, inits)]
# Convert self.joint_rep_type -> rotmat
joint_conversion_fn = rot6d_to_rotmat
# conversion
pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.num_body_joints+1, 3, 3)
# Build the output dict
pred_smpl_params = {'global_orient': pred_body_pose[:, [0]],
'body_pose': pred_body_pose[:, 1:],
'betas': pred_betas,
#'betas_kid': pred_betas_kid,
'expression': pred_expression}
return pred_smpl_params, pred_cam #, pred_smpl_params_list
def regression_mlp(layers_sizes):
"""
Return a fully connected network.
"""
assert len(layers_sizes) >= 2
in_features = layers_sizes[0]
layers = []
for i in range(1, len(layers_sizes)-1):
out_features = layers_sizes[i]
layers.append(torch.nn.Linear(in_features, out_features))
layers.append(torch.nn.ReLU())
in_features = out_features
layers.append(torch.nn.Linear(in_features, layers_sizes[-1]))
return torch.nn.Sequential(*layers)
def apply_threshold(det_thresh, _scores):
""" Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately """
if isinstance(det_thresh, list):
det_thresh = det_thresh[0]
idx = torch.where(_scores >= det_thresh)
return idx
def _nms(heat, kernel=3):
""" easy non maximal supression (as in CenterNet) """
if kernel not in [2, 4]:
pad = (kernel - 1) // 2
else:
if kernel == 2:
pad = 1
else:
pad = 2
hmax = nn.functional.max_pool2d( heat, (kernel, kernel), stride=1, padding=pad)
if hmax.shape[2] > heat.shape[2]:
hmax = hmax[:, :, :heat.shape[2], :heat.shape[3]]
keep = (hmax == heat).float()
return heat * keep
def _sigmoid(x):
y = torch.clamp(x.sigmoid_(), min=1e-4, max=1-1e-4)
return y
if __name__ == "__main__":
Model()