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Chapter 1

Introduction

Traditional images contain informations of colors of some scenes, and when

stored as typical image formats in computers, these images usually are con-

verted to some speci�c color spaces for the convenience of displayers, for

example, jpeg format use s-RGB space. This interpretation of images pro-

vides the fundamental of most image processing tasks and their solutions,

from simple tasks such as edge detection, to di�cult tasks such as scene

understanding.

With the development of technologies, for present days it is possible to get

more informations other than merely color. In this thesis we will mainly focus

on depth informations, which will be referred to as depth map. Depth maps

are images containing information relating to the distance of the surfaces of

scene objects from a viewpoint. The depth information directly provides the

clue for the spacial relation of the objects in some scene, which is vital in

many image processing problems, such as semantic segmentation and object

recognition. At the same time, the usage of depth map introduces new tasks:
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the acquisition of high quality depth map, the registration of corresponding

depth map and color images, etc.

In this thesis we will study the both sides of the utilization of depth

maps: in chapter 2, we propose a local-linear �tting based depth upsampling

algorithm to obtain high resolution and accurate depth map, as well as over-

coming the intrinsic missing points problem; and in chapter 3, we exploit

the depth map to construct a synthesized outdoor scene dataset obeying the

atmospheric model, for the benchmarking of image dehazing algorithms.

This chapter is organized as follow: section 1.1 provides the background

on the acquisition and defects of depth maps; section 1.2 discusses the moti-

vation for image dehazing problem; section 1.3 discusses the contribution of

this thesis and the future work.

Background on depth map

Depth map with corresponding RGB images can be called RGB-D images.

Figure. 1.1 shows an example of one pair of RGB-D images. RGB-D images

play an important role in image processing and machine vision: in stereo

researches depth maps serve as the centre information for inferring 3D re-

constructions and registration; in other core tasks in image processing and

machine vision, they are also widely used, for example segmentation, tracking

and image dehazing. Typical techniques to obtain depth maps includes Time-

Of-Flight(ToF) camera, structured light based systems, and Lidar scanning
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systems generating points cloud from which the depth can be extracted.

The key challenge in using RGB-D images is that the depth images are

limited in resolution compared to corresponding RGB images, and that the

generated depth maps inevitably have missing points. The two prominent

methods for capturing depth data are time-of-Flight (ToF) and structured

light based systems. While ToF based systems provide highly accurate depth

information, they are relatively tedious to use and even after sophisticated

alignment with images [12], typically o�er a lower resolution than typical

high resolution color cameras. For structured light based RGB-D images a

signi�cant fraction of the pixels (up to 10%) are not assigned depth values

due to the challenges of these systems. Thus for both ToF and structured

light based RGB-D image capture systems, some forms of depth upsampling

(including hole �lling) are required to generate a complete RGB-D image.

Figure. 1.2 and 1.3 depict the principle for the two capturing methods and the

drawbacks. In this thesis we want to propose a depth upsampling algorithm

to overcome both di�culties.

Figure 1.1: Left:cubic structure, right: depth map(nearer is darker).
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Background on haze and dehazing

Haze and fog are common atmospheric phenomena, caused by the high den-

sity and various size of water droplets or particles distributed in the air.

Both human vision and images taken under such condition are limited in

hazy weather, on the clarity of the contour and the blurred color of objects,

especially when the objects are far away or the haze is dense. Figure 1.4

is an example for the same scene in hazy weather and clear weather: the

color in hazy part is generally more "gray" than the normal part, and the

edges of di�erent objects are more di�cult to tell. This degradation may

results in signi�cant problems in many areas, for example when driving in

hazy days, the velocity must be slower than clear days to keep safe. Due to

the similarity in physical model, under water vision also has the analogous

e�ects. This problem introduces a new task for image processing, namely

image dehazing, or eliminating the haze in images. Another reason driven

this study on dehazing algorithms is that air and haze caused by air pollution

has attract more and more attentions all over the world, especially in China.

We hope the study can do some help in alleviating this problem.

There are many dehazing algorithms being proposed by now, either based

on certain assumptions or other machine learning frameworks. However,

there are no general criteria for evaluating the performances of di�erent al-

gorithms. And for existing datasets, most of them are indoor scenes which

is not the typical application situation for dehazing algorithms. To build a
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synthesized hazy scene involves both color images and depth informations,

which is a suitable application for RGB-D images. Thus we want to construct

a dataset for image dehazing problem, providing outdoor scenes of di�erent

weather conditions and ground truth.

Contribution and future work

This thesis has two main contributions. First, an accurate depth map upsam-

pling algorithm is proposed. This method is based on local linear �tting and

utilizes the color information to improve the edge quality. We also propose a

memory saving implementation to solve the optimization problem. Second,

we use RGB-D images to construct an outdoor scene dataset, HazeRD, and

benchmarked some state-of-the-art dehazing algorithms. Compared to ex-

isting dataset, HazeRD provides high-resolution outdoor scenes of di�erent

haze levels with ground truth, instead of indoor scenes, which is the typical

conditions for the application of dehazing algorithm.

The work in this thesis also has some limitations. The proposed depth

upsampling algorithm is extremely time consuming compared to naive meth-

ods such as bilinear or bicubic interpolation. In future work, one direction is

to use parallel techniques to accelerate the computing. Besides, the bench-

marking results of state of art dehazing algorithms indicates that the main

bottleneck lies in the consistency of the estimated transmission of the same

objects. In future work, new dehazing algorithms combining image segmen-
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tation algorithms should be considered.

Appendix to Chapter ??

Sometimes you might want a chapter-speci�c appendix numbered separately

from the section numbers in the main text. This is especially useful when you

are dealing with numbered equations or theorems, and want a way to denote

that a result lives in the appendix. See the source code for this chapter for

how this is done.
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Figure 1.2: Top: Time-of-Flight camera: low resolution; bottom: Structured
light: missing points by occlusion.
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Figure 1.3: Example depth maps.Top: resolution di�erence; bottom: Missing
points.
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Figure 1.4: The same scene in di�erent weather: left: in hazy weather; right:
in clear weather.
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Chapter 2

A Local-Linear-Fitting-Based Matting Ap-

proach for Accurate Depth Upsampling

Introduction

Depth upsampling aims at obtaining high resolution depth maps based on

low resolution version. Naive method such as bilinear or bicubic interpola-

tion uses only depth informations, which result in the problem of blurred,

gradual-changing edges, making the interpolation terrible for complex scenes.

To overcome this problem, color image can be exploited to constraint the

interpolation consistent within contours. For smooth area, simple bilinear

methods usually can provide a satisfying results and advanced algorithms

can behave similar to keep the procedure compact. We obey this observation

and provide a local linear �tting based matting approach for accurate depth

spsampling in this chapter.

This chapter will discuss a local-linear-�tting based matting approach for

accurate depth upsampling, and the memory saving optimization method
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using conjugate gradient solver. This chapter is organized as follows: Sec-

tion 2.2 brie�y discuss related literature to depth upsampling. Section 2.3

describes the scheme of our algorithm, and the memory saving solver. We

present both the quantitative and the qualitative results in Section 2.4, and

conclude the paper in Section 2.5.

Related work

Traditionally depth upsampling is accomplished by bilinear or bicubic in-

terpolation. These methods have di�culty in preserving the sharp edges in

depth maps. Several methods have been developed to overcome these prob-

lems, aiming at improving the accuracy of depth upsampling problem. One

class of techniques relies on proposing a prior and optimizing an objective

function that combines prior and data �delity terms [13, 14, 15, 16, 17, 4, 3].

Diebel and Thrun [13] proposed an upsampling algorithm based on Markov

random �eld (MRF), which is de�ned through depth measure potential,

depth smooth prior and weighting factors. This MRF framework is further

improved by other researchers, such as [18] and [19]. Yang et al. [14] made

use of a bilateral �lter in an iterative re�nement framework. The re�nement

is constructed on a cost volume de�ned on the current depth map and the

RGB image. This algorithm can also work on two view depth map re�ne-

ment with a di�erent cost volume de�nition. In [15], the guided �lter was

designed for edge preserving �lter, which can be viewed as an extension of
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the bilateral �lter. Kopf et al. [16] proposed joint a bilateral �lter which is

also similar in principle. Both �lters can be used to upsample the depth map

with a high resolution RGB image. Park et al. [17] gave an algorithm based

on a non local mean �lter. The low resolution depth map is pre-processed

to detect outliers. These points are removed and to obtain the high resolu-

tion depth map an objective function consisting of a smooth term, non-local

structure term and data term is optimized. This algorithm is also suitable for

�lling large holes in the depth data. Ferstl et al. [4] gave an algorithm based

on total generalization variance (TGV). A TGV regularization weighted ac-

cording to intensity image texture is used in the objective function and the

optimization is solved as a primal-dual problem. Yang et al. [3] built a color-

guided adaptive regression model for depth map upsampling. Di�erent edge

preserving terms including non-local mean and bilateral �lters are tested and

an analysis is given on the parameter selection and the system stability.

Another category of depth map upsampling utilizes segmentation tech-

niques to extract depth information. Krishnamurthy and Ramakrishnan [20]

and Uruma et al. [21] start from an upsampled depth map using standard in-

terpolation methods and re�ne the result by image segmentation techniques.

The segmentation process serves a similar function in preserving edges as the

afore-mentioned �lters.

A common theme of prior algorithms, also adopted in our work, is to

"�x" edges of upsampled depth map for better consistency with the color

image. Our work is inspired by Levin et al.'s optimization formulation of
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matting [22], in which the alpha value for the matting mask is modeled as

a linear combination of neighboring color values. Analogous to the mat-

ting problem, we formulate depth upsampling as an optimization problem.

Speci�cally, the upsampled image is estimated by minimizing an objective

function comprising two additive terms. The �rst term ensures that the es-

timated depth map is locally smooth consistent with the color image and

the second term ensures consistency of the estimated upsampled data with

the low resolution observed data at the corresponding locations. Depth map

upsampling is then achieved by solving a large sparse linear system following

a similar approach as was done for matting in [22]. A key di�erence between

the matting problem and our approach is that we model the depth as a linear

function of the local spatial coordinates and not as a linear function of the

image intensity values.

Proposed local-linear-�tting-based depth upsam-

pling algorithm

Local-linear-�tting-based Problem Formulation

Our proposed method is motivated by the fact that regions of the image that

correspond to a smooth 3D surface, can be locally approximated by a plane

(for example, via a Taylor series expansion). Thus, over each small patch

in the image in regions corresponding to smooth surfaces, a local linear �t
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(in spatial coordinates) provides a good approximation to the depth. To

account for edges, where the assumption breaks down, adaptive nonnegative

weights are introduced for the linear �tting. The weighting seeks to e�ectively

concentrate the linear �t at each point on the neighboring pixel locations that

are hypothesized, based on their color similarity to the pixel of interest, to be

on the same side of the edge. The weights can be obtained from one of several

edge preserving techniques, for example, non local mean or bilateral �lter.

The upsampled depth map is obtained by minimizing an overall objective

function that combines a term corresponding to the weighted deviation from

the local linear �tting with a data �delity term that penalizes deviations from

observations at the locations where the low resolution depth map is available.

An intuitive interpretation is depicted in Fig. ??.

To formally describe our algorithm we use the simpli�ed 1D representa-

tion in Fig. 2.2 that illustrates the contribution of one pixel to the objective

function. The axis G represents the relative pixel positions of points in local

pixel neighborhood of the target pixel which is located at G = 0. The low

resolution depth map, denoted by DL, is available at a subset of the pixel

locations in the neighborhood as indicated in the �gure and color values,

denoted by I, form the high resolution RGB image. The goal is to estimate

a high resolution depth map DH . Our objective function is formulated as

Q =
N∑
j=1

∑
i∈N (j)

||wi,j(di,j −DH,i)||2 +
M∑
j=1

λ(DL,j −DH,j)
2, (2.1)



CHAPTER 2. LOCAL-LINEAR-FITTING-BASED DEPTH UPSAMPLING 15

Figure 2.1: The intuitive interpretation for the proposed algorithm. Two
patch, respectively cropped from the handle area and the box ara, display
di�erent patterns in depth maps. The intuition of the proposed method aims
to construct a linear interpolation based on only pixels with the same object
which is supposed to be similar in both depth and color.

where j indexes the pixel locations in the upsampled image, N is the number

of pixels in the upsampled image, M is the number of pixels in the low

resolution depth map, di,j is the value of linear �tting of pixel i in the neighbor

of pixel j, DH,i is the estimated depth at pixel i in the neighbor of pixel j,

and DL,j is the depth value at the pixel j of the low resolution depth map,

wi,j is the similarity metric of pixel i and j, and λ is the free parameter to

control the relation of �delity and smoothness. The local linear �t is de�ned

as

di,j = AjGi,j +Bj, (2.2)

where Aj and Bj are the parameters for linear �tting at pixel DH,j, Aj is

a 1-by-2 vector and Bj is a scalar, and Gi,j is a 2-by-1 vector denoting the
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Figure 2.2: The illustration of problem formulation in 1D. The magenta and
cyan points show di�erent color pixels in the patch of color image, and the
circles around data points indicate the available low resolution depth values.
The �lled and un-�lled circles mean the desired upsampled depth map and
the input depth map, respectively, and the line is the �tting result on the
example area. The weights are illustrated by the size of �lled circles.

relative coordinate of pixel i in the neighbor window of pixel j. We de�ne

Gi,j
def
= {(x, y)| − ws < x < ws,−ws < y < ws}, where ws is the size of the

window. The �rst term in (??) is the regularization term and the second

term is the data �delity. The formulation is readily extended to the hole

�lling problem by adding, to the �delity penalty term, a product with the

indicator function of non-missing points and pixel values.

The weights wi,j are de�ned as

wi,j = exp−||Ii − Ij||
2

2σ2
, (2.3)
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where Ii and Ij are pixel values of the RGB image I at corresponding position,

and σ controls the relative emphasis of pixel similarity in the allocation of

weights. Alternative, formulations of the weights such as those used in non

local mean or bilateral �lter can also be used in the proposed framework.

Unlike the typical bilateral �lter, we do not use the distance decay term

in (2.3) because the window we use is quite small comparing to the high

resolution images.

Our problem formulation and the algorithmic approach we use for the

solution (described in the next section) are inspired by Levin's formulation

of matting as an optimization problem [22], where the alpha channel is for-

mulated as a weighted linear combination of neighboring color values. A key

di�erence in our formulation is that the our weighted local linear �t is for-

mulated in terms of the local relative spatial position for the neighborhood,

whereas in [22] the weighted linear �t is performed on the color values for

the neighborhood pixels.

Optimization Solution

Rewriting (2.1) in the matrix form, we obtain

Q =
N∑
j=1

(Wj(DH,Nj −GP T
j ))

2 + λFj, (2.4)
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where G = [Gj, 1] and Pj = [Aj, Bj]
T . Wj is a diagonal matrix with wi,j being

its diagonal entries. DH,Nj is the depth value in the patch1. The matrix Pj

can be eliminated by replacing it in (2.4) by its optimal value

Pj = argminPj((Wj(DH,Nj −GP T
j ))

2)

= (GTW T
0,jG)

−1GTW T
0,jDH,Nj ,

(2.5)

where W0,j is the diagonal matrix,

W0,j = W T
j Wj, (2.6)

Replacing Pj in (2.1) by (2.5), we obtain,

Q =
N∑
j=1

DT
H,Nj

(Gj
T
W0,jGj)DH,Nj +

M∑
j=1

λ(DL,j −DH,j)
2, (2.7)

Gj = E −G(GTW T
0,jG)

−1GTW0,j, (2.8)

where E denoting the identity matrix.

The minimizer for the quadratic objective function Q is readily obtained,

speci�cally, as the solution to the linear equation,

LD + λA(D − d) = 0, (2.9)

1We pad the image to represent G consistently at all positions.
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where L is the Laplacian matrix [23],

L =
N∑
j=1

Gj
T
W0,jGj (2.10)

and A is a diagonal matrix indicating the correspondence of pixels in low

resolution map to the upsampled map. The derivation detail is listed in

appendix 2.A.

memory saving implementation

In last section the optimization of the objective is formulated as an large

sparse linear system, which can be e�ciently solved with methods such as

conjugate gradient solver. In practise, one important constraint for this

method is that the Laplacian matrix and the successive processing, even

though sparse, are very large and require a lot of memory. To reduce the

memory requirement, we propose a computational e�ciency improvement

for the optimization, still exploiting the framework of conjugate gradient

method [24, 25].

Algorithm 1 describes the conjugate gradient algorithm for solving sparse

linear systems. This algorithm is designed for solving symmetric and positive-

de�nite linear systems, which is suitable for the optimization in our problem

where the Laplacian matrix automatically satis�es the required condition.

This method exploits the conjugate vectors with respect to A and iteratively

approximates the closest solution.
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input : Initial guess I0, convergence threshold τ

output : Ĩ : estimate for I

Procedure Initialize: Ĩ← I0, r0 ← b−AĨ, p0 ← r0, j ← 0;

while r
T
j rj > τ |I| do

αj ←
r
T
j rj

p
T
j Apj

;

Ĩ← Ĩ+ αjpj;

rj+1 ← rj − αjApj;

βj ←
r
T
j+1rj+1

r
T
j rj

;

pj+1 ← rj+1 + βjpj;

end

Algorithm 1: Solve the sparse linear system AI = b using conjugate-
gradient algorithm.
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One bottleneck for the proposed depth upsampling algorithm is that, for

high resolution images, the Laplacian matrix is beyond typical computers'

memory, for example a mega-pixel image will require constructing a matrix of

tera-entries. This problem can be e�ective solved with some modi�cations on

the naive conjugate gradient method, namely calculating Apj in algorithm 1

without explicit constructing A, in our case the Laplacian matrix.

From (2.10) we can obtain the the entry Li,j at the ith row and the j

column of the Laplacian matrix,

Li,j =
∑

k|i,j∈Nk

(δijwki − wkiwkj(Gi − k0)Ck(Gj − k0)), (2.11)

where Nk is the neighbour of pixel k, whose range is speci�ed by the window

size, wki is the weigh of pixel k to pixel i and j, δij is the Kronecker delta ,

Ck is the inverse of Gj
T
W0,jGj of pixel k, Gi is relative coordinate of pixel i

to k, and k0 is the the global coordinate of the pixel k. Then we break the

summation stepwise, �rst computing,

ak = Ck(
∑
j∈Nk

wkjGjPj − kpk), (2.12)

where Pj is the ith entry of vector P , and pk is the average of Pj in Nk. then,

bk = k0ak, (2.13)

at the last step, combine ak and bk to obtain (Lp)i, the entry at the ith
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column of vector Lp,

(Lp)i =
∑

δijwkiPi −Gi

∑
k∈Ni

akwki +
∑
k∈Ni

bkwki, (2.14)

further, the inverse Ck can be expressed as,
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C =


yTwy1Tw1− yTw11Twy yTw11Twx− yTwx1Tw1 yTwx1Twy− yTwy1Twx

xTw11Twy− xTwy1Tw1 xTwx1Tw1− xTw11Twx xTwy1Twx− xTwx1Twy

xTwyyTw1− xTw1yTwy xTw1yTwx− xTwxyTw1 xTwxyTwy− xTwyyTwx

 , (2.15)

or more compactly as the minor of the matrix:

C =


M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

 , (2.16)

here the normalization term omitted.
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Substitute the update step of pj+1 in algorithm 1 with (2.14) we can get

the version for optimization the proposed depth upsampling algorithm. The

derivation detail is listed in appendix 2.B.

In colorization problem the summation in (2.12), (2.13), and (2.14) can

be e�ciently calculated by integral image techniques and dynamic program-

ming. This step is possible as that the formulation in colorization utilizes

a �xed summation table; but in our case, the Gjwkj is a summed table of

localized �lters wk, which means that the values re-used in summed table is

no longer applicable here. This restriction limits the acceleration of comput-

ing but still allows the memory saving. By this implementation the required

memory for a two mega-pixel image is reduced from 60GB to 2GB memory.

With parallel computation, this method can have a good balance in memory

usage and time consumption.

experimental results

We test our algorithm on the Middlebury (stereo) dataset [1, 26, 27, 2], which

provides high resolution RGB images of multiple views and corresponding

disparity maps, which are used as the ground truth in our experiment. We

use a window size of 7 × 7 (≡ N = 49), and λ = 105. The RGB-D images

are zero-padded for consistent use of (??), and the padded area is cropped

out in the �nal results. The parameter σ2 in (??) for computation of the

weights wi,j is set to one third of the local variance in each window. In each
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patch, the weight of the center pixel is set to 10−5. We use the built-in

Matlab conjugate gradient solver (cgs) for solving (??) (a tolerance of 10−10

and maximum number of iteration 104 were used).

Qualitative and Quantitative Results

The proposed algorithm is both suitable for hole �lling for single disparity

map and depth map upsampling, as indicated earlier. In this part, we �rst

visually examine the performance of �lling holes in depth map, as shown in

Fig. 2.3. From the images in the last column, we can �nd that the holes,

which correspond to the occluded area in the disparity map, are well �lled.

Unlike traditional interpolation methods, our algorithm is able to �x the holes

in the depth images, so as to keep the consistency of depth map edges with

those in the RGB images and avoid smoothing in such areas. For example,

see the third row of Fig. 2.3. The missing points along the wall are well �tted

to the two sides, and not blurred as a large patch.
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Figure 2.3: Qualitative results of the hole �lling ability of our algorithm,
tested on Middlebury stereo dataset 2014 [2]. The �rst column shows the
input high resolution color images and the second column shows the corre-
sponding depth maps. The results are shown in the last column. The images
are processed at a low resolution of approximate 60k to 80k pixels.
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Figure 2.4: Visual comparison of di�erent algorithm tested on Middlebury
dataset [1] at 4× upsampling rate. Column from left to right: RGB images,
ground truth, and the results of: bilinear, bicubic, IBL [3], TGV [4] and
proposed; row from top to bottom: Art, Books, and Moebius.



CHAPTER 2. LOCAL-LINEAR-FITTING-BASED DEPTH UPSAMPLING 28

Figure 2.5: Visual comparison of di�erent algorithm tested on Middlebury
dataset [1] at 4× upsampling rate. Column from left to right: RGB images,
ground truth, and the results of: bilinear, bicubic, IBL [3], TGV [4] and
proposed; row from top to bottom: Art, Books, and Moebius.
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Figure 2.6: Visual comparison of di�erent algorithm tested on Middlebury
dataset [1] at 4× upsampling rate. Column from left to right: RGB images,
ground truth, and the results of: bilinear, bicubic, IBL [3], TGV [4] and
proposed; row from top to bottom: Art, Books, and Moebius.
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0

Images
Art Books Moebius

Methods

Sample Rate

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

bicubic 0.8965 1.4298 2.4363 4.3456 0.7911 1.0842 1.7031 2.5419 0.6855 1.0287 1.5821 2.5527
bilinear 0.7642 1.2300 2.1495 3.9500 0.6620 0.8993 1.4183 2.1174 0.5685 0.8578 1.3347 2.1942
IBL [14] 0.5016 0.8934 1.7028 4.2324 0.2790 0.7361 1.4056 2.4561 0.3987 0.7071 1.1289 2.5885
TGV [4] 0.6457 0.8926 3.2633 7.6490 0.5980 0.7507 2.3091 6.324 0.4722 0.5627 2.0375 6.6210
Proposed 0.4423 0.8765 1.7616 3.6033 0.1986 0.3594 0.6655 1.1888 0.1864 0.3426 0.6478 1.2393

Table 2.1: Quantitative comparison of di�erent algorithms tested on Middlebury dataset [1]. The results is
evaluated as MAE (the smaller the better) for four di�erent sample rates, as listed in the second row. All
values are computed based on the disparity maps. The best result in each situation is in bold font.
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Quantitative results comparing the proposed algorithm against prior work

are obtained on the Middlebury stereo dataset 2005 [1]. We �rst downsample

the input depth map to obtain the low resolution version, and then run

di�erent algorithms on these images to obtain the upsampled versions. We

use mean absolute error (MAE) as the metric to evaluate the performance of

di�erent algorithms. Table 2.1 summarizes the results2. Fig. 2.6 shows the

corresponding visual results at the upsampling rate of 4. The results show

that our algorithm is particularly suitable for depth map upsampling, and

our algorithm provides a better result compared with the other algorithms.

Discussion

Table 2.1 illustrates that the depth map upsampling obtained with the pro-

posed algorithm is accurate and achieves the state of the art results on the

common benchmarking dataset, providing a better performance compared

with other algorithms. The proposed algorithm, however, still su�ers from

two limitations. First, there are a few outlier points where the method yields

a large error. Second, the edges are not sharply de�ned, especially under

high upsampling rate, which is typical in most depth upsampling algorithms.

The computational requirements are an additional challenge: to process a

1088 × 1296 pixel image, our algorithm takes about 40min. While the time

requirement is analogous for several other upsampling algorithms, a speed-up
2Code for IBL implementation is provided by Chunhua Shen:

https://bitbucket.org/chhshen/depth-enhancement.
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is desirable for many applications.

We also want to mention more about the relation of the proposed algo-

rithm with Levin's [22] matting method and He's [24] fast computing algo-

rithm. Levin's method is to formulate a linear combination of neighbour

pixels value for estimating matting map, or alpha channel; He's method is

based on Levin's formulation and proposed the acceleration also using con-

jugate gradient. In our problem, we utilize the linear relation of spacial

instead direct pixel values; and, we formulate a local �ltered conjugate gra-

dient formulation using conjugate gradient, instead of an adjacent matrix.

The similarity and di�erence of the proposed algorithm with Levin's method

is listed in 2.2.

Levin's matting method Proposed method

similarity
• linear model
• build Laplacian matrix to solve the optimization

di�erence linear in color intensity
• linear in relative spatial location
• weight based on color information

Table 2.2: Similarity and di�erence of the proposed algorithm with Levin's
method [?]

Conclusion

The algorithm proposed in this paper provides an e�ective method for depth

map upsampling and hole �lling. Quantitative results on test data indicates

that the method o�ers an improvement over current state of the art methods

and visual assessment shows that the depth map estimated by the proposed
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technique is consistent with the color images.

Appendix to Chapter 2.3.2

For (2.5),

Pj = argminPj((Wj(DH,Nj −GP T
j ))

2)

= (GTW T
0,jG)

−1GTW T
0,jDH,Nj ,

(2.17)

so,

d((Wj(DH,Nj −GP T
j ))

2)/dPj = 0

= Wj(DH,Nj −GP T
j ))G

T ,

(2.18)

solve the linear equation gives,

Pj = (GTW T
0,jG)

−1GTW T
0,jDH,Nj . (2.19)
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For (2.20),

Q =
N∑
j=1

(Wj(DH,Nj −G(GTW T
0,jG)

−1GTW T
0,jDH,Nj

T
))2 + λFj

=
N∑
j=1

((WjDH,Nj)(E −G(GTW T
0,jG)

−1GTW T
0,j

T
))2 + λFj

=
N∑
j=1

DT
H,Nj

(Gj
T
W0,jGj)DH,Nj + λFj

=
N∑
j=1

DT
H,Nj

(Gj
T
W0,jGj)DH,Nj +

M∑
j=1

λ(DL,j −DH,j)
2,

(2.20)

Appendix to Chapter 2.3.3

For (2.14),

(Lp)i =
∑

δijwkiPi −Gi

∑
k∈Ni

akwki +
∑
k∈Ni

bkwki

=
∑

δijwkiPi −Gi

∑
k∈Ni

akwkik0akwki

=
∑

δijwkiPi −Gi

∑
k∈Ni

(Ck(
∑
j∈Nk

wkjGjPj − kpk))wkik0akwki

=
∑
j

(
∑

k|i,j∈Nk

(δijwki − wkiwkj(Gi − k0)Ck(Gj − k0)))pj

(2.21)
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Chapter 3

Hazerd: an outdoor scene dataset and

benchmark for Single image dehazing

Introduction

Haze is a common degradation encountered in outdoor images, where image

contrast is reduced due to light scattered by particles suspended in the air.

Koschmieder [28, 29] proposed a classical physical model to explain haze,

in which horizontal airlight from scattering and light re�ected by objects,

transmitted and attenuated in the propagation through the hazy air, both

contribute to the �nal images and the ratio of their contributions are con-

trolled by the optical thickness of the media between the camera sensor and

the object being imaged. The loss of detail caused by haze makes images aes-

thetically unappealing and also poses challenges for both human and machine

vision, making it di�cult to recognize and track objects and to navigate.

To mitigate the impact of haze, physics-based algorithms have been pro-

posed for haze removal or dehazing. Early works mainly focus on image
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dehazing utilizing additional information. Such works includes: in [30], two

images under di�erent weather conditions for the same location are exploited

for haze removal; in [31], rough geological information is used; and in [32], the

fusion of near-infrared images and the hazy images are utilized for enhancing

the details. These algorithms need multiple images or additional informa-

tion. Though proved to be e�cient, these works need either multiple images

or information other than RGB images, which may be inaccessible for gen-

eral applications, for example outdoor image dehazing taken by mainstream

consumer-level digital cameras.

In this chapter we focus on single image dehazing methods that typically

seek to estimate both the airlight and the transmission from a single hazy

image, which is an ill-posed problem. To address the ill-posedness most al-

gorithms impose additional constraints or assumptions to obtain solutions.

In [33, 34, 9], color-line or haze-line has been used for modeling the spatial

variance of similar color objects. In [35], constraints on air veil are imposed

based on the physical model. In [36], the assumption of higher contrast

and local smoothness are introduced. In [6], a dark channel prior is pro-

posed that postulates that the color channel with lowest intensity represents

airlight. The dark prior is extended in [7] to accommodate color boundary

constraints. An alternative color attenuation prior is used with supervised

learning in [8] and image fusion based approaches are proposed in [37, 38].

In [39], a Bayesian framework for haze estimation is described. In [10, 11],

deep learning networks are designed for estimating the transmission map.



CHAPTER 3. HAZERD: A DEHAZING DATASET AND BENCHMARK 37

Despite the large number of algorithms proposed for single image dehaz-

ing, there are no established criteria or metrics for their evaluation and past

publications have primarily relied on subjective comparisons on a limited

number of images, with di�erent publications using di�erent sets of images.

Three datasets: FRIDA [40], D-hazy [5], and CHIC [41] have been proposed

in prior work for objective evaluation of algorithms. FRIDA [40] is rather

specialized and provides several synthetic hazy road images from a driver's

viewpoint. D-hazy uses depth images from the Middlebury [2] and the NYU

depth V2 [42] which are indoor scenes not representative of the typical de-

hazing applications. CHIC uses a fog machine in an indoor environment and

provides 2 indoor scenes with known objects (e.g. Macbeth color checker)

and 2 scenes that include outdoor content seen through windows. The indoor

fog generation makes these images atypical, particularly for the case where

an outdoor haze-free scene is seen from haze within the room.

In this chapter, we provide a new image dataset HazeRD, Haze Realistic

Dataset, for benchmarking of dehazing algorithms that consists of ten dif-

ferent actual outdoor scenes at high resolution with simulated haze under

�ve di�erent weather conditions, where realistic parameter values are chosen

based on scattering theory. As compared to the indoor scenes used in [5],

these scenes are more representative of the outdoor conditions under which

dehazing is of interest and they correspond to actual images as opposed to the

synthetically generated versions in [40]. We benchmark a number of single

image dehazing algorithms both on the proposed new dataset and on the ex-
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isting D-hazy dataset [5]. Our results demonstrate that there are signi�cant

di�erences between the performance of the di�erent algorithms on di�erent

datasets and the rank order of algorithms is by no means constant over the

di�erent datasets, thereby emphasizing the need for datasets like ours that

are matched with realistic conditions under which dehazing is utilized.

The chapter is organized as follows. Section 3.2 discusses the physical

model for atmosphere scattering and image formation; Section 3.3 describes

the simulation process; Section 3.4 discusses the HazeRD dataset; Section 3.5

brie�y summarizes some state of art dehazing techniques and their perfor-

mance; at last, Section 3.6, discusses some noteworthy points about dehazing

problems and the future work that may be done with HazeRD.

physical model for haze

Atmospheric optics interprets the propagation of light in haze or fog as the

process of light random di�usion and re�ection by the particles in the air.

Hazy weather is caused by the particles, mainly water droplets distributed

in the air, which vary in both the size and the density. Haze, fog and cloud

in principle share the same components, namely the air with multiple sized

water droplets, but di�er in the average size and distribution. The scattering

of single water droplet has di�erent behaviours regarding to the size, or the

radius of the droplet: Rayleigh scattering deals with conditions that the ra-

dius is of the size of visible light wavelengths, which corresponding to almost
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Figure 3.1: The physical model for haze. Light at the sensor is composed of
airlight scattered by particles suspended in the air and light re�ected from
imaged objects, which is attenuated when propagating through the air.

clear weather; and Mie scattering deals with those with the radius far beyond

the wavelengths, which displays high anisotrophy in the scattered light. The

accumulated contribution of the distribution of the water droplets ultimately

form the scattered light of the incident light. Table 3.1 lists di�erent weather

and the corresponding particles making the main contribution.

As refer to above, Mie scattering theory [29, Chap. 5, 6], which ap-

plies when particle sizes are signi�cantly larger that the wavelengths of light

involved, can be used to analyze light propagation under hazy conditions.

While the exact details of Mie theory are quite involved, image formation

under hazy weather can be modeled by taking two main factors into ac-

count: the airlight and the attenuation. The physical scenario is depicted
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Type Radius(µm) Concentration(cm−3)
Air molecule 10−4 1019

Aitken nucleus 10−4-10−2 104-102

Haze Particle 10−2-1 102-1
Fog droplet 1-10 100-10
Cloud droplet 1-10 300-10
Raindrop 102-104 10−2-10−5

Table 3.1: Particle sizes for di�erent weather

in Fig. 3.1. Due to the scattering of light by the particles in the haze, light

from objects attenuates as it propagates from the object to the camera with

an intensity that declines exponentially with distance. At the same time,

part of the ambient illumination is scattered by the haze particles into the

camera as airlight that increases the intensity of the image. Assuming a ho-

mogeneous haze and a uniform ambient illumination, the spectral irradiance

incident on the camera sensor plane from an object with spatially uniform

spectral irradiance Eλ can be written as [28],

Iλ = tλEλ + (1− tλ)Aλ, (3.1)

where λ denotes the wavelength, Aλ is the airlight, and tλ = e−dβλ is the so

called transmission, with βλ denoting the scattering coe�cient for the haze

particles, and d denoting the distance between the object and the camera.

The product dβλ is called the optical thickness. Observe that as the distance

d increases, the contribution of airlight increases while the light from the

object diminishes, leading to reduced contrast. The image captured by a
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typical three channel RGB (red-green-blue) camera can then be expressed

as,

IC =

∫
λ

tλEλRλ,C + (1− tλ)AλRλ,Cdλ, (3.2)

where C ∈ {R,G,B} represents the image channel and Rλ,C the camera

spectral response of the channel.

Haze simulation

In dense haze or fog, the scattering coe�cient βλ is almost constant over the

visible spectral region, and therefore we can simplify (3.2) by setting βλ = β

for all wavelengths λ. The captured image channel intensities can then be

represented as

IC(x, y) = EC(x, y)t(x, y) + AC(x, y)(1− t(x, y)), (3.3)

t(x, y) = e−βd(x,y),

where (x, y) denotes spatial location,

EC(x, y) =

∫
λ

Eλ(x, y)Rλ,Cdλ,

is the irradiance of the object received by camera sensor in the absence of

haze, i.e., the haze-free image, and AC =
∫
λ
AλRλ,Cdλ is the airlight, and

the depth d(x, y) denotes the distance of the object imaged at (x, y) from
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the camera plane. Note that a key advantage of the simpli�ed model is

that hazy images can be simulated using only haze free images along with

depth information using the scattering parameter β and the airlight AC and

the spectral distributions on the right hand side of (3.2), which are invari-

ably unavailable, are not required for the haze simulation. The color and

gamma correction [43] in encoding the raw camera sensor values into digital

images, however, need to be accounted for. Images are typically encoded

in the sRGB color space [44]. We assume that the color correction matrix

is absorbed into the channel sensitivities in (3.2) and the "linear" intensity

values from (3.3) are nonlinearly encoded into the digital image values via

the transform speci�ed in the sRGB standard [44], viz.,

C =


12.92CL C ≤ 0.0031308,

1.055C
1/2.4
L − 0.055 C > 0.0031308,

(3.4)

here CL is the linear RGB value for each channel, C is the corresponding

sRGB encoded value, where the transformation is speci�ed on a [0−1] range

which is then mapped to the 8-bit digital encoding. For the simulation, the

inverse of the transformation in (3.4) is applied to the recorded haze free

image after mapping the data into the [0− 1] range and once the simulated

hazy images are obtained via (3.3) the transformation in (3.4) is applied and

the images are re-encoded as 8-bit representations.

The scattering parameter β depends on the weather conditions. Its value
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is speci�ed in terms of the intuitive notion of visual range [29, pp. 42], which

is de�ned, under daylight conditions, as the distance at which the apparent

contrast between a dark object and the horizon sky becomes equal to the just

noticeable contrast threshold ε for an observer (usually set to 0.02). Speci�-

cally, the scattering parameter is obtained from the visible range Rm via the

relation β = − ln(ε)/Rm. HazeRD simulates �ve di�erent conditions from

light to dense fog, for which the visible range and the scattering parameter

are listed in Table. 3.2. For simulating hazy images, HazeRD uses (3.3) with

these parameter values along with captured haze free images that also have

an associated depth map d(x, y) available. Fig. 3.2 summarizes the the haze

simulation process.

50m 100m 200m 500m 1000m
weather condition dense thick thick moderate light
scattering coef. β 78.2 39.1 19.6 7.82 3.91

Table 3.2: The visual range in HazeRD, and the corresponding weather con-
dition and the scattering coe�cient β.

dataset

For performance of single image dehazing algorithms, HazeRD provides ten

scenes, each one having a clean RGB image and a ground truth depth map.

The dataset is derived from the architectural biometrics project [45, 46]ï¼�

on which we �rst estimate the dense depth maps for each scene by fusing

structure from motion and lidar [12]. Five di�erent weather conditions are
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Figure 3.2: Flow for haze simulation based on (3.3).
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simulated in each scene, ranging from light fog to dense fog, in order to test

the robustness of dehazing algorithms. See Fig. 3.3 for the dataset generation

and benchmark block diagram. The simulation of haze and fog is performed

by inverse application of (3.4) followed by (3.3), re-white balance and redo

the gamma correction. The color image values are converted to [0, 1] for

implementing the color space transferring. Then, we use a weighted median

�lter [47] and the triangular interpolation for the re�nement of the depth

map. The airlight is set to 0.86, to ensure a visual vividness of objects in

overcast weather. Sky area, where typically depth values are missing, is set

to have the distance of two times the visual range, which ensures that the

transmission is of the order 10−4 and that almost no noise is introduced for

normal pictures. A sample of hazy images derived from one of the original

images in HazeRD is shown in Fig. 3.4 for a number of di�erent visual ranges.

Figure. 3.5 shows the depth histograms of HazeRD and for the Middlebury

and NYU datasets that also provide images and depth maps required for haze

simulation. Compared to the other two datasets which focus primarily on

indoor images, the outdoor images in HazeRD span a much larger range of

distance ranges and show clear clustering of di�erent object depths. For each

scene and the weather condition, a noisy version is provided. Considering

the complexity of the real environment, strictly homogeneity is impossible.

In atmospheric optics the main component of random �uctuations usually

can be expressed by low-order Seidel aberration; here we use the Perlin noise

to simulate this phenomenon [40].
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Figure 3.3: Benchmarking work�ow for evaluating dehazing algorithms using
the HazeRD(proposed) and D-Hazy [5] dataset.

Figure 3.4: HazeRD Samples. From left to right: a hazy image, with the
visual range of 50m, 100m, 200m, and 500m respectively.

benchmark: algorithms and datasets

As mentioned above, a typical dehazing algorithm usually has two stages:

�rst, some priors or constraints are formulated to regularize the undercon-

strained problem, then a loss function is minimized to determine a solution;

which is then re�ned using the hazy images, mainly to eliminate halos or

arti�cial details. In this section, we benchmark six state of art dehazing

algorithms described in the following, which we referred to by the labels cor-

responding to the �rst author's last name as: (1) He [6], (2) Meng [7], (3)

Zhu [8], (4) Berman [9], (5) Cai [10] and (6) Ren [11]. We brie�y summarize

the algorithms in order to subsequently understand their success and failure.

Some examples of these techniques on HazeRD and synthesized NYU and
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Figure 3.5: Histograms of 3 dataset. Left: HazeRD, Middlebury, and NYU,
right: the Middlebury dataset and NYU.

Middlebury dataset are showed in Fig. 3.6, Fig. 3.7, Fig. 3.9, and Fig. 3.8.

He [6] observed that in haze free images, usually the lowest value of

a pixel among three channels is close to zero. Thereby from (3.3) in hazy

images, the lowest value, called dark channel prior, is an approximation of the

transmission. Soft-matting or a guided �lter is used as re�nement to �t the

estimated transmission to the object outlines. This prior is developed further

by others, for example into Meng's [7] color boundary prior and Zhu's [8] color

attenuation prior. The color boundary prior argues that for each image, the

color directions are constrained in a cube. The dark channel prior can be

derived from the boundary prior with appropriate choice of parameters. The

color attenuation prior assumes that the depth can be modeled based on on

pixels' saturation and intensity.

Fattal and Berman [34, 9] developed single image dehazing algorithms
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from the color consistency view, called color-line, or haze-line. In their work,

the colors of pixels are assumed to be consistent in a small patch of the

object. Given the image formation process, patches of the same color should

be co-linear, resulting in the so called color-line, and the shifts indicate the

optical distance. The di�culty lies in detecting validated patches and in

interpolation for the invalid ones. Haze-line is the clustering of the quantized

colors, which avoid the complication of patch detection.

Besides these algorithms with strong assumptions, deep learning concepts

are also exploited in dehazing algorithms. Cai [10] proposed a four-layer net-

work consisting of a CNN layer, a multi-scale mapping layer, a max pooling

layer and a fully-connected layer. The training set is formed from synthesized

patches with homogeneous transmission. Ren [11] proposed a coarse-to-�ne

network consisting of cascade of CNN layers. The training set is obtained as

crops from the NYU dataset. Both methods trained the neural network to

compute the transmission.

The performance of dehazing techniques can be evaluated from two per-

spectives: the accuracy of estimated transmission maps and the �delity of the

dehazed images, each with respect to the corresponding ground truth. We

use root mean square (RMS) error to evaluate the di�erence of the estimated

transmission and the ground truth, SSIM [48] to evaluate the similarity of

dehazed images and the original haze free images, and CIEDE2000 [49] to

evaluate the color �delity. Results for the algorithms benchmarked and across

the di�erent individual datasets are summarized in Table. 3.3. These results
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show that typically the transmission values (which are always smaller than

1) have a large error, and the SSIM and CIEDE2000 metrics also show that

the dehazed images have signi�cant perceptible di�erence with the original

images. The performance of most of the techniques tested here varies with

di�erent weather conditions. Table. 3.3 also lists the weather condition, or

equivalently visual range, that yields the best average performance for each

algorithm. The tabulated values indicate that algorithms based on priors are

limited largely due to the scene and the weather. Generally, these algorithms

are not reliable in the sense of dehazing. The visual range for indoor dataset,

Middlebury and NYU dataset, is expanded to 5m, 10m, 20m and 50m com-

pared to [5]. Contrasting the di�erences between indoor and outdoor scenes

is important for that generally dehazing techniques are more likely to be used

in the latter case. For each algorithm, we run the T-test on the RMS, the

SSIM and the CIEDE2000 of HazeRD and the two reference datasets. These

datasets shows statistically signi�cant di�erences between the performances

of most algorithms (α = 5%). This demonstrates the value of HazeRD as

an alternative benchmark for dehazing algorithms: the results on the indoor

datasets with limited depth range do not appear to hold for the outdoor

datasets.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.6: Example of algorithms' performances. (a): a haze free image
from HazeRD, and the results of dehazing of a corresponding hazy image
obtained with: (b):He [6], (c): Meng [7], (d): Zhu [8], (e): Berman [9], (f):
Cai [10], and (g): Ren [11].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.7: Example of algorithms' performances. (a): the ground truth
transmission for the haze free image in 3.6, and the transmission esti-
mates corresponding to the estimated images obtained with: (b):He [6], (c):
Meng [7], (d): Zhu [8], (e): Berman [9], (f): Cai [10], and (g): Ren [11].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.8: Example of algorithms' performances. (a): a haze free image
from Middlebury dataset, and the results of dehazing of a corresponding hazy
image obtained with: (b):He [6], (c): Meng [7], (d): Zhu [8], (e): Berman [9],
(f): Cai [10], and (g): Ren [11].
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3.9: Example of algorithms' performances. (a): a haze free image
from NYU dataset, and the results of dehazing of a corresponding hazy image
obtained with: (b):He [6], (c): Meng [7], (d): Zhu [8], (e): Berman [9], (f):
Cai [10], and (g): Ren [11].
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He [6] Meng [7] Zhu [8] Berman [9] Cai [10] Ren [11]

HazeRD

RMS 0.2978 ± 0.0902 0.3007 ± 0.0927 0.1991 ± 0.0641 0.2193 ± 0.1113 0.2765 ± 0.1002 0.2680 ± 0.0990
SSIM 0.5148 ± 0.1293 0.6464 ± 0.1723 0.6692 ± 0.1979 0.5962 ± 0.1593 0.4770 ± 0.1808 0.6664 ± 0.2013

CIEDE2000 20.7038 ± 4.2821 17.2284 ± 5.0159 15.4259 ± 5.7246 19.0647 ± 4.8029 19.5447 ± 4.8312 14.5432 ± 6.0696

Best at dense thick to light moderate to light no preference dense light

Middlebury

RMS 0.2142 ± 0.1242 0.2461 ± 0.1408 0.1921 ± 0.0985∗ 0.2551 ± 0.1084∗ 0.1792 ± 0.0792 0.2022 ± 0.0980
SSIM 0.7046 ± 0.1383 0.5788 ± 0.2487 0.6394 ± 0.2524 0.6093 ± 0.2200 0.6227 ± 0.2556 0.5978 ± 0.2522

CIEDE2000 19.3802 ± 6.6979 18.4290 ± 4.7335∗ 19.8333 ± 12.2146∗ 19.1038 ± 6.6742∗ 18.8720 ± 10.4724∗ 20.0272 ± 11.1873
Best at 10m/20m 50m 50m 50m 20m/50m 50m

NYU

RMS 0.2074 ± 0.1121 0.2404 ± 0.1228 0.1998 ± 0.0845∗ 0.2119 ± 0.0769∗ 0.1976 ± 0.0772 0.1995 ± 0.0758
SSIM 0.6478 ± 0.0518 0.7203 ± 0.0596 0.7029 ± 0.1668∗ 0.7100 ± 0.0763 0.6773 ± 0.1261 0.7044 ± 0.1459∗

CIEDE2000 19.7528 ± 3.6458∗ 16.9486 ± 2.8969∗ 16.2086 ± 8.1587∗ 15.7918 ± 2.8642 16.5856 ± 5.5898 15.4301 ± 7.3678∗

Best at 10m 10m 50m 50m 20m/50m 20m 50m

Table 3.3: Performance of di�erent dehazing methods on HazeRD, Middlebury, and NYU datasets. Each
numerical entry is represented as the average over the images in the dataset±the standard deviation. The
best performing algorithm for each dataset is indicated in bold font, and * in the Middlebury and NYU
datasets indicates cases where the di�erence with respect to HazeRD was not statistically signi�cant (5%
level).
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The regions in which these algorithms fail on the HazeRD database also

provides insight. Algorithms based on dark channel assume all white or

bright area is mainly caused by skylight. In HazeRD, there are several white

or bright walls which undermine these assumptions, for example, see �g-

ure. 3.10. Typical dark channel values are above 0.2, and the error is almost

linear in all weather conditions. The haze-line algorithm also has di�culty on

bright surfaces, especially rough surfaces. The �uctuations in such surfaces

are ampli�ed to a large color di�erence. Cai's [10] algorithm tends to under-

estimate the transmission in sky area, which may be caused by the training

set, generated by cropping small patches merely from images, and assigning

a uniform random depth for each patch.

discussion

As we have seen from the experiment results, none of the algorithms bench-

marked here provides a sound estimate for the transmission on the HazeRD

dataset and each algorithm su�ers from some artifacts or color in�delity. In

other words, most algorithms seem to focus on enhancing the contrast or

saturation without regard to what the true haze free image would be. Partly

the reason is that some priors don't hold true on these images. Generally

most priors are observations based on particular kinds of images, not the

physical model itself. Another easily overlooked problem is that the skylight

is not actually uniform but exhibits a gradual variation. In fact, we expect
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the clear dehazed sky to be blue and not the gray or white that is commonly

observed. Last but not least, the performance of most of the techniques

tested here varies depending on the weather condition, which indicates that

proposed priors should be tested systematically and that training sets for

deep learning methods should include more comprehensive situations.

The results we obtained here indicate that indoor and outdoor scenes

have some fundamental di�erences on dehazing techniques and HazeRD pro-

vides a valuable alternative for the benchmarking for dehazing algorithms

in more realistic outdoor settings. HazeRD is also a potential dataset for

benchmarking of other algorithms including monocular image depth estima-

tion, outdoor scene segmentation, and other applications requiring RGB-D

information.
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Figure 3.10: Scatter diagram of one scene of the dark channel prior error (y
axis) and the transmission error (x axis) in log scale. Each point represents
the density of pixels with similar prior-transmission ratios. See the bright
line. The dark prior channel is above 0.2 in most area, which is contradictory
to the assumption. The transmission error is almost linearly related to the
dark channel error. From left to right, fog: dense, thick, moderate, light.
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Chapter 4

Conclusion

This thesis has two main contributions. First, an accurate depth map upsam-

pling algorithm is proposed. This method is based on local linear �tting and

utilizes the color information to improve the edge quality. We also propose a

memory saving implementation to solve the optimization problem. Second,

we using RGB-D images to construct an outdoor scene dataset, HazeRD, and

the benchmarking for dehazing algorithms. Compared to existing dataset,

HazeRD provides outdoor scenes instead of indoor scenes, which is the typ-

ical conditions for the application of dehazing algorithm, and ground truth

of high accuracy.

The work in this thesis also has some limitations. The proposed depth

upsampling algorithm is extremely time consuming compared to naive meth-

ods such as bilinear or bicubic interpolation. In future work, one direction is

to use parallel techniques to accelerate the computing. Besides, the bench-

marking results of state of art dehazing algorithms indicates that the main

bottleneck lies in the consistency of the estimated transmission of the same
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objects. In future work, new dehazing algorithms combining image segmen-

tation algorithms should be considered.
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